Объем фигур вращения правильных многогранников

,

значит

.

Откуда

Так как часть оси вращения, заключенная внутри тела вращения (H) – суть диагональ куба, следовательно,

.

Тогда

Значит,

;

Ответ:

Задача 2.2.

Вычислить объем тела, полученного вращением куба относительно оси, проходящей через середины его противоположных ребер, если ребро куба равно а.

Решение:

В результате вращения образуется тело, состоящее из двух гиперболоидов вращения с общим основанием (см. рис.).

Таким образом,

, где

RВ равно половине ребра куба, т.е. равно ;

RН – радиус окружности, описанной около прямоугольника со сторонами , следовательно, равен .

H – высота тела вращения – равна половине диагонали грани куба, т.е. равна .

RСР можно найти как медиану в прямоугольном треугольнике с катетами и RВ, гипотенуза которого равна RН (смотри рисунок).

Таким образом, получаем,

.

Окончательно получаем:

.

Ответ:

Задача 2.3.

Вычислить объем тела, полученного вращением куба относительно оси, проходящей через центры его противоположных граней, если ребро куба равно а.

Решение:

Фигурой вращения является цилиндр, основанием которого служит окружность, описанная около квадрата (грани куба). Высота цилиндра (H) равна ребру куба и равна а.

.

Так как в основании цилиндра находится окружность, описанная около квадрата, значит

; ;

Ответ:

Октаэдр

Задача 3.1.

Вычислить объем тела, полученного вращением октаэдра относительно оси, проходящей через противоположные вершины, если ребро октаэдра равно а.

Решение:

В данном случае прямые (образующие поверхности) пересекают ось вращения, значит, в результате вращения получаются конические поверхности с общим основанием.

;

;

Так как R – радиус окружности, описанной около квадрата со стороной а, то

;

;

;

Ответ:

Задача 3.2.

Вычислить объем тела, полученного вращением октаэдра относительно оси, проходящей через середины его противоположных ребер, если ребро октаэдра равно а.

Решение:

Тело, полученное при данном типе вращения, состоит из двух равных цилиндров и двух гиперболоидов вращения с общим основанием.

Следовательно,

Для нахождения радиусов и высот элементов, из которых состоит тело вращения, воспользуемся теоремой о линиях пересечения цилиндрической и гиперболической поверхностей вращения.

(половина ребра октаэдра)

RН равен половине главной диагонали октаэдра, следовательно,

.

RСР находим как медиану треугольника А3ОN (см. рисунок).

1). ∆ОМА3: .

, следовательно, .

Пусть ML = x, тогда

.

С другой стороны

Откуда

.

Следовательно,

,

тогда

.

2). ∆NOA3: .

Пусть , тогда по теореме косинусов:

, откуда

,

тогда из ∆А3OK находим

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы