Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа

Рассмотрим содержание материала по тригонометрии изложенного в различных учебниках по математике за курс 10 – 11 класс средней школы, с целью его сравнения, анализа и формироваания наиболее приемлемой методики внедрения данной темы в школьном курсе математики.

Башмаков М.И. Алгебра и начала анализа. 10-11

Учебник разбит на 6 глав. Каждая глава открывается списком вопросов и задач. Затем

коротко формулируются результаты, которые необходимо достичь после изучения главы. Материал, касающийся темы «Решение тригонометрических уравнений и неравенств» представлен в главе III «Тригонометрические функции» после изучения глав «Функции и графики» и «Производная и её применение».

Четвёртая глава «Показательная и логарифмическая функции» и пятая глава «Интеграл и его применение» не содержат обращений к области тригонометрии вообще, а в шестой главе «Уравнения и неравенства» встречаются и тригонометрические уравнения, и тригонометрические неравенства.

Обращаясь в главе III к теме «Тригонометрические функции» М.И. Башмаков считает нужным повторить такие темы как: измерение углов; соотношения в треугольнике; вращательное движение; техника вычислений. Далее вводятся: определения и простейшие свойства тригонометрических функций; формулы приведения; значения тригонометрических функций.

Причём, здесь же вводится основное тригонометрическое тождество.

Здесь же М.И Башмаков рассматривает вопрос решения простейших тригонометрических уравнений по тригонометрической окружности.

Следующие разделы данной темы «Исследование тригонометрических функций» и «Тождественные преобразования». Лишь после этого в разделе «Решение уравнений и неравенств» вводятся различные виды уравнений и некоторые виды неравенств. И соответственно здесь же говорится о способах и методах их решения.

Схема изучения темы «Решение тригонометрические уравнений и неравенств» определяется следующим образом: функция → уравнения → преобразования.[3]

Мордкович А.Г. Алгебра и начала анализа. 10-11

Учебник разбит на 8 глав. В конце изучения каждой главы чётко обозначены основные результаты изучения. Курс изучения математики в 10 классе начинается с изучения главы «Тригонометрические функции». Здесь автор вводит понятия тригонометрической окружности на координатной плоскости, понятия синус и косинус, основные тригонометрические соотношения с ними связанные, решения простейших уравнений по тригонометрической окружности. Как таковые формулы приведения вводятся после изучения тригонометрических функций углового аргумента. Далее рассматриваются свойства и графики тригонометрических функций. Во второй главе «Тригонометрические уравнения» подробно рассматривается решение каждого простейшего тригонометрического уравнения, на основе ранее введенных понятий арксинуса, арккосинуса, арктангенса. В этой же главе рассмотрены такие методы решения: разложение на множители и введение новой переменной; метод решения однородных тригонометрических уравнений. Другие методы решения рассматриваются после изучения третьей главы «Преобразование тригонометрических выражений».

Здесь схема изучения выглядит следующим образом: функция → уравнения → преобразования.

С точки зрения применения учебник Мордковича удобен для самостоятельного изучения учащимися, т.к. он содержит сильную теоретическую базу. Изложение теоретического материала ведётся очень подробно. В условиях острой нехватки часов для проведения занятий в классе возрастает значение самостоятельной работы учеников с книгой. Опираясь на учебник, учитель прекрасно разберётся в том, что надо рассказать учащимся на уроке, что заставить их запомнить, а что предложить им просто прочесть дома.

К недостаткам можно отнести не очень большое количество упражнений по этой теме в самом учебнике.[19]

Колмогоров А.Н. Алгебра и начала анализа

Учебник содержит 4 главы. Схема изучения материала по теме «Решение тригонометрических уравнений и неравенств» радикально отличается от предыдущих, т.к. сначала рассматриваются тригонометрические функции числового аргумента и основные формулы тригонометрии. В этой же первой главе, но несколько позже, рассматриваются основные свойства тригонометрических функций, их графики и их исследование. После этого вводятся понятия арксинус, арккосинус, арктангенс, арккотангенс и «параллельно» с этим решение простейших тригонометрических уравнений и неравенств. Автор не называет методов решения тригонометрических уравнений, а описывает алгоритм их решения. Тоже касается и решения тригонометрических неравенств.

Таким образом, схема изучения выглядит так: преобразования функции уравнения.

Стоит отметить, что учебник содержит достаточно много дидактических материалов, как простых так и более сложных. Это естественно обеспечивает учителю возможность варьировать задания для учащихся.

С точки зрения изложения теоретического материала нельзя сказать, что учебник идеально подходит для самостоятельного изучения.[14]

Анализ содержания набора задач в теме «Тригонометрические уравнения» приводит к следующим выводам:

1) преобладающими являются простейшие тригонометрические уравнения, решение которых основано на определениях соответствующих функций в понятиях арксинуса, арккосинуса, арктангенса числа;

2) фактически отсутствуют тригонометрические уравнения, способ решения которых основан на свойстве ограниченности синуса и косинуса;

3) если говорить о связях приемов решения тригонометрических уравнений с приемами тождественных преобразований тригонометрических и алгебраических выражений, то следует отметить, что эти приемы в учебном пособии представлены бедно и однообразно. Рассматриваются приемы тождественных преобразований:

а) тригонометрические выражения:

- прием использования основного тригонометрического тождества;

- прием использования формул двойного и половинного аргументы;

- прием преобразования суммы тригонометрических выражений в произведение;

б) алгебраических выражений:

- прием разложения на множители;

- прием преобразования тригонометрического выражения, представляющего собой однородный многочлен относительно синуса и косинуса.

Использование указанных приемов приводит к тригонометрическим уравнениям, которые условно можно разделить на следующие виды:

а) сводящиеся к квадратным относительно тригонометрической функции;

б) сводящиеся к дробно-рациональным относительно тригонометрической функции;

в) сводящиеся к однородным;

г) сводящиеся к виду , где - тригонометрическая функция . [16, c/55]

1.3 Роль и место тригонометрических уравнений и неравенств в ШКМ

Тригонометрия традиционно является одной из важнейших составных частей школьного курса математики. И этот курс предполагает задачи, решить которые, как правило, можно, пройдя целенаправленную специальную подготовку.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы