Использование моделирования в обучении решению задач в 5 классе
«Таблица – это тоже модель задачи, но более абстрактная, чем схематический рисунок или чертеж. Она предполагает уже хорошее знание учащимися взаимозависимостей пропорциональных величин, так как сама таблица этих взаимозависимостей не показывает. Поэтому при первичном знакомстве с такой задачей таблица мало помогает представить математическую ситуацию и выбрать нужное действие» [26, 127].
При первичном знакомстве с таким видом задач целесообразно смоделировать условие в виде схематического рисунка или чертежа.
|
|
? ?
|
?
По такой модели решение задачи становится более понятным для всех учащихся.
Рассмотрим задачу 179: [3, 49]
«Масса яблока 140 г, а масса груши на 60 г больше. Какова масса трех таких груш и яблок?»
|
|
Масса груши -
Какова масса трех таких груш и яблока?
Схематический рисунок этой задачи позволяет наглядно убедиться, что разница между массой яблока и массой груши составляет 60 г. При решении главное – понять, что сначала нужно найти массу одной груши. Поняв это, дети сами записывают решение.
Модели помогают найти разные способы решения одной и той же задачи.
«Движение является темой для самых разнообразных задач. Существует самостоятельный тип задач «на движение». Он объединяет такие задачи, которые решаются на основании зависимости между тремя величинами, характеризующими движение: скоростью, временем и расстоянием. Во всех случаях речь идет о равномерном прямолинейном движении» [28, 31].
«Основные объекты задач «на движение»: пройденный путь (s), скорость (v), время (t); основное отношение (зависимость): s = vt.» [9, 40]
Рассмотрим особенности решения основных видов задач «на движение».
Задачи на встречное движение двух тел.
Пусть движение первого тела характеризуется величинами s1, v1, t1; движение второго – s2, v2, t2. Такое движение можно представить на схематическом чертеже:
v1 v2
t1 t2
А s1 t встр. s2 В
S
Если два тела начинают движение одновременно навстречу друг другу, то каждое из них с момента выхода и до встречи затрачивает одинаковое время, т.е. t1= t2= t встр
Расстояние, на которое сближаются движущиеся объекты за единицу времени, называется скоростью сближения, то есть v сбл.= v1+ v2.
Все расстояние, пройденное движущимися телами при встречном движении, может быть подсчитано по формуле: S= v сбл * tсбл
Задачи на движение двух тел в одном направлении.
«Среди них следует различать два типа задач:
1) движение начинается одновременно из разных пунктов;
2) движение начинается в разное время из одного пункта». [23, 61].
Рассмотрим случай, когда движение двух тел начинается одновременно в одном направлении из разных пунктов, лежащих на одной прямой. Пусть движение первого тела характеризуется величинами s1, v1, t1, а движение второго - s2, v2, t2.
Такое движение можно представить на схематическом чертеже:
v1 v2
t1 t2
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах