История развития математики
Первой достаточно объемистой книгой, в которой арифметика излагалась независимо от геометрии, было "Введение в арифметику" Никомаха (ок.100 н. э). В истории арифметики ее роль сравнима с ролью "Начал" Евклида в истории геометрии. На протяжении более 1000 лет она служила стандартным учебником, поскольку в ней ясно, четко и всеобъемлюще излагалось учение о целых числах (просты
х, составных, взаимно простых, а также о пропорциях). Повторяя многие пифагорейские утверждения, Введение Никомаха вместе с тем шло дальше, так как Никомах видел и более общие отношения, хотя и приводил их без доказательства.
Знаменательной вехой в алгебре александрийских греков стали работы Диофанта (ок.250 гг.). Одно из главных его достижений связано с введением в алгебру начал символики. В своих работах Диофант не предлагал общих методов, он имел дело с конкретными положительными рациональными числами, а не с их буквенными обозначениями. Он заложил основы т. н. диофантова анализа – исследования неопределенных уравнений.
Высшим достижением александрийских математиков стало создание количественной астрономии. Гиппарху (ок.161 – 126 до н. э) мы обязаны изобретением тригонометрии. Его метод был основан на теореме, утверждающей, что в подобных треугольниках отношение длин любых двух сторон одного из них равно отношению длин двух соответственных сторон другого. В частности, отношение длины катета, лежащего против острого угла А в прямоугольном треугольнике, к длине гипотенузы должно быть одним и тем же для всех прямоугольных треугольников, имеющих один и тот же острый угол А. Это отношение известно как синус (sin) угла А. Отношения длин других сторон прямоугольного треугольника получили название косинуса (cos) и тангенса (tg) угла А. Гиппарх изобрел метод вычисления таких отношений и составил их таблицы. Располагая этими таблицами и легко измеримыми расстояниями на поверхности Земли, он смог вычислить длину ее большой окружности и расстояние до Луны. По его расчетам, радиус Луны составил одну треть земного радиуса; по современным данным отношение радиусов Луны и Земли составляет 27/1000. Гиппарх определил продолжительность солнечного года с ошибкой всего лишь в 61/2 минуты; считается, что именно он ввел широты и долготы.
Греческая тригонометрия и ее приложения в астрономии достигли пика своего развития в "Альмагесте" египтянина Клавдия Птолемея (умер в 168 н. э). В "Альмагесте" была представлена теория движения небесных тел, господствовавшая вплоть до XVI в., когда ее сменила теория Коперника. Птолемей стремился построить самую простую математическую модель, сознавая, что его теория – всего лишь удобное математическое описание астрономических явлений, согласованное с наблюдениями. Теория Коперника одержала верх именно потому, что как модель она оказалась проще.
2.3 Упадок Греции
После завоевания Египта римлянами в 31 до н.э. великая греческая александрийская цивилизация пришла в упадок. Цицерон с гордостью утверждал, что в отличие от греков, римляне не мечтатели, а потому применяют свои математические знания на практике, извлекая из них реальную пользу. Однако в развитие самой математики вклад римлян был незначителен. Римская система счисления основывалась на громоздких обозначениях чисел. Главной ее особенностью был аддитивный принцип. Даже вычитательный принцип, например, запись числа 9 в виде IX, вошел в широкое употребление только после изобретения наборных литер в 15 в. Римские обозначения чисел применялись в некоторых европейских школах примерно до 1600, а в бухгалтерии и столетием позже.
3. Индия и арабы
Преемниками греков в истории математики стали индийцы. Индийские математики не занимались доказательствами, но они ввели оригинальные понятия и ряд эффективных методов. Именно они впервые ввели нуль и как кардинальное число, и как символ отсутствия единиц в соответствующем разряде. Махавира (850 н. э) установил правила операций с нулем, полагая, однако, что деление числа на нуль оставляет число неизменным. Правильный ответ для случая деления числа на нуль был дан Бхаскарой (р. в 1114), ему же принадлежат правила действий над иррациональными числами. Индийцы ввели понятие отрицательных чисел (для обозначения долгов). Самое раннее их использование мы находим у Брахмагупты (ок.630). Ариабхата (р.476) пошел дальше Диофанта в использовании непрерывных дробей при решении неопределенных уравнений.
Наша современная система счисления, основанная на позиционном принципе записи чисел и нуля как кардинального числа и использовании обозначения пустого разряда, называется индо-арабской. На стене храма, построенного в Индии ок.250 до н.э., обнаружено несколько цифр, напоминающих по своим очертаниям наши современные цифры.
Около 800 г. индийская математика достигла Багдада. Термин "алгебра" происходит от начала названия книги “АЛЬ-джебр Ва-л-мукабала" ("Восполнение и противопоставление"), написанной в 830 г. астрономом и математиком аль-Хорезми. В своем сочинении он воздавал должное заслугам индийской математики. Алгебра аль‑Хорезми была основана на трудах Брахмагупты, но в ней явственно различимы вавилонское и греческое влияния. Другой выдающийся арабский математик Ибн аль‑Хайсам (ок.965 – 1039) разработал способ получения алгебраических решений квадратных и кубических уравнений. Арабские математики, в их числе и Омар Хайям, умели решать некоторые кубические уравнения с помощью геометрических методов, используя конические сечения. Арабские астрономы ввели в тригонометрию понятие тангенса (tg) и котангенса (ctg). Насирэддин Туси (1201 - 1274) в "Трактате о полном четырехугольнике" систематически изложил плоскую и сферическую геометрии и первым рассмотрел тригонометрию отдельно от астрономии.
И все же самым важным вкладом арабов в математику стали их переводы и комментарии к великим творениям греков. Европа познакомилась с этими работами после завоевания арабами Северной Африки и Испании, а позднее труды греков были переведены на латынь.
4. Средние века и Возрождение
4.1 Средневековая Европа
Римская цивилизация не оставила заметного следа в математике, поскольку была слишком озабочена решением практических проблем. Цивилизация, сложившаяся в Европе раннего Средневековья (ок.400 – 1100), не была продуктивной по прямо противоположной причине: интеллектуальная жизнь сосредоточилась почти исключительно на теологии и загробной жизни. Уровень математического знания не поднимался выше арифметики и простых разделов из "Начал" Евклида”. Наиболее важным разделом математики в Средние века считалась астрология; астрологов называли математиками. А поскольку медицинская практика основывалась преимущественно на астрологических показаниях или противопоказаниях, медикам не оставалось ничего другого, как стать математиками.
Около 1100 г. в западноевропейской математике начался почти трехвековой период освоения сохраненного арабами и византийскими греками наследия Древнего мира и Востока. Поскольку арабы владели почти всеми трудами древних греков, Европа получила обширную математическую литературу. Перевод этих трудов на латынь способствовал подъему математических исследований. Все великие ученые того времени признавали, что черпали вдохновение в трудах греков.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах