Прогнозирование сбыта как основная часть плана продаж
Точечный прогноз исходит из того, что данный вариант развития включает единственное значение прогнозируемого показателя, например, среднедневной товарооборот в следующем месяце возрастет на 5%.
Интервальный прогноз - это такое предсказание будущего, в котором предполагается некоторый интервал, диапазон значений прогнозируемого показателя, например: среднедневной товарооборот в следующем мес
яце возрастет на 5-8%.
1.4 Методы прогнозирования
Единого, универсального, метода прогнозирования экономических показателей не существует. В связи с огромным разнообразием прогнозируемых ситуаций имеется и большое разнообразие методов прогнозирования (свыше 150). На рисунке 2 представлен один из вариантов классификации методов прогнозирования.
Рис. 2. Классификация методов прогнозирования
Рассмотрим более подробно некоторые из наиболее широко применяемых в практике методы статистического и экспертного прогнозирования.
Статистическое прогнозирование
Для рассмотрения выделим следующие методы статистического прогнозирования:
1. Экстраполяция по скользящей средней - может применяться для целей краткосрочного прогнозирования. Метод скользящей средней состоит в замене фактических уровней динамического ряда расчетными, имеющими значительно меньшую колебательность, чем исходные данные. При этом средняя рассчитывается по группам данных за определенный интервал времени, причем каждая последующая группа образуется со сдвигом на один год (месяц). В результате подобной операции первоначальные колебания динамического ряда сглаживаются, поэтому и операция называется сглаживанием рядов динамики (основная тенденция развития выражается при этом уже в виде некоторой плавной линии).
2. Экспоненциальная средняя. При рассмотрении скользящей средней не учитывается, «возраст» наблюдения. То есть влияние прошлых наблюдений должно затухать по мере удаления от момента, для которого определяется средняя.
Одним из простейших приемов сглаживания динамического ряда с учетом “устаревания” является расчет специальных показателей, получивших название экспоненциальных средних, которые широко применяются в краткосрочном прогнозировании. Основная идея метода состоит в использовании в качестве прогноза линейной комбинации прошлых и текущих наблюдений. Экспоненциальная средняя рассчитывается по формуле:
Qt = a yt + (1 - a )Qt-1 (1) ,
где Qt - экспоненциальная средняя (сглаженное значение уровня ряда) на момент t;
a - коэффициент, характеризующий вес текущего наблюдения при расчете экспоненциальной средней (параметр сглаживания), причем 0 < a < 1.
Из уравнения следует, что средний уровень ряда на момент t равен линейной комбинации двух величин: фактического уровня для этого же момента и среднего уровня, рассчитанного для предыдущего периода.
Выше отмечено, что a может находиться в пределах 0; 1. Однако практически диапазон значений a находится в пределах от 0,1 до 0,3. В большинстве случаев хорошие результаты дает a = 0,1. При выборе значения a , необходимо учитывать, что для повышения скорости реакции на изменение процесса развития необходимо повысить значение a (тем самым увеличивается вес текущих наблюдений), однако при этом уменьшается “фильтрационные” возможности экспоненциальной средней.
3. Прогнозирование на основе сезонных колебаний.
Одним из статистических методов прогнозирования является расчет прогнозов на основе сезонных колебаний уровней динамического ряда. При этом под сезонными колебаниями понимаются такие изменения уровня динамического ряда, которые вызываются влияниями времени года. Методика статистического прогноза по сезонным колебаниям основана на их экстраполяции, т.е. на предположении, что параметры сезонных колебаний сохраняются до прогнозируемого периода. Для измерения сезонных колебаний обычно исчисляются индексы сезонности, или усредненные индексы сезонности.
Приведенные методы измерения сезонных колебаний не являются единственными. Так, для выявления сезонных колебаний можно применять и рассмотренный выше метод скользящей средней, и другие методы.
Индексный метод вообще очень широко применяется в прогнозировании социально-экономических явлений и, в частности, деятельности предприятий – для составления прогнозов как объемных, так и качественных показателей (в т.ч. изменения цен, производительности труда, издержек производства и обращения, прибыли и др.).
4. Прогнозирование методом линейной регрессии - является одним из наиболее широко применяемых методов статистического прогнозирования. Метод базируется на анализе взаимосвязи двух переменных (метод парной корреляции) - влияние вариации факторного показателя Х (например, расходов на рекламу) на результативный показатель У (например, на объем продаж).14
Экспертное прогнозирование
Экспертные методы прогнозирования применяются, как правило, в случаях, когда отсутствуют какие-либо статистические данные, на которых мог бы базироваться количественный прогноз, как, например, в случае, когда предприятие собирается выпустить на рынок совершенно новый продукт.
Классификация методов экспертного прогнозирования приведена в табл.2.
Таблица 2
Классификация экспертных методов прогнозирования
Вид экспертизы |
Вид обработки мнений | ||||||
без аналитической обработки |
с аналитической обработкой | ||||||
Индивидуальная |
Интервью |
Экспертные |
Генерация идей |
Построение сценария |
Метод “дерева целей” |
Матричный метод |
Морфоло-гический анализ |
Коллективная |
Метод “мозгового штурма” |
Метод коллективных экспертных оценок |
Метод “Дельфи” | ||||
Сущность метода экспертных оценок заключается в проведении экспертами интуитивно-логического анализа проблемы с количественной оценкой суждений и формальной обработкой результатов. Получаемое в результате обработки обобщенное мнение принимается как решение проблемы (в данном случае - прогноз).
Центральным этапом экспертного прогнозирования является проведение опроса экспертов. В зависимости от целей и задач экспертизы, существа и сложности анализируемой проблемы, времени, отведенного на опрос и экспертизу в целом, и допустимой их стоимости, а также от подбора участвующих в ней специалистов, выбирается метод опроса: