Прогнозирование емкости и коньюктуры рынка
Выдвинем нулевую гипотезу: во временном ряде (данные графы 2) нет тенденции среднего уровня и нет тенденции дисперсии. Для проверки выдвинутой нулевой гипотезы необходимо рассчитать по формулам и значения t1 и t2. Но для этого надо знать значения μ, σ1,
63;2 . В приложении 1 приведены данные для n=10 и для n=15, а нам надо найти данные для n=12.
Для нахождения данных при n=12 используем принцип интерполяции, предположив, что эти данные в интервале от n=10 до n=15 изменяются линейно, т.е. равномерно. Поэтому нам нужно к значениям данных при n=10 прибавить их изменения за два (2=12–10) шага и получить искомые данных.
Найдем μ для n=12 следующим образом. Значение μ для n=10, согласно приложению 1, равно 3,858. Увеличение μ при изменении n на 2 шага найдем следующим образом
.
Отсюда μ(12)=μ(10)+Δμ=3,858+0,311=4,169. Аналогичным образом найдем значения для σ1(12)=1,381 и для σ2(12)=2,040. По формулам (2.7) найдем значения t1 и t2
= (8 – 4,169)/1,381 = 3,326; = (8-0)/2,040 = 3,92
Случайные величины t1 и t2 имеют распределение Стьюдента с числом степеней свободы К = n – 1 = 12 – 1 = 11 и уровнем значимости a, который может принимать значения 0,01; 0,05 и т.д. Примем уровень значимости (вероятность, с которой исследователь может ошибиться), равный 0,05 (5%). На основе выбранного уровня значимости а = 0,05 рассчитаем доверительную вероятность: g = 1 – а = 1 – 0,05 = 0,95.
По числу степеней свободы К = 11 и величине доверительной вероятности g = 0,95 по таблице «Значение t-критерия Стьюдента» (Приложение 1)определим табличное значение случайной величины (tg): tg = 2,201.
Расчетные значения t1 и t2 сопоставим с табличным tg.
Если сопоставить расчетные значения t1 и t2 с табличным tg, то может возникнуть четыре ситуации.
1) |t1| > |tg|.
Данный вариант означает, что нулевая гипотеза об отсутствии в ряде тенденции отвергается и с вероятностью g во временном ряде имеет место тенденция дисперсии.
2) |t1| < |tg|.
Данный вариант означает, что нулевая гипотеза об отсутствии в ряде тенденции принимается и с вероятностью g во временном ряде нет тенденции дисперсии.
3) |t2| > |tg|.
Данный вариант означает, что нулевая гипотеза об отсутствии в ряде тенденции отвергается и с вероятностью g во временном ряде имеет место тенденция в среднем.
4) |t2| < |tg|.
Данный вариант означает, что нулевая гипотеза об отсутствии в ряде тенденции принимается и с вероятностью g во временном ряде нет тенденции в среднем.
1) 3,326 > 2,201; 3,92 > 2,201Þ нулевая гипотеза об отсутствии в ряде тенденции отвергается и с вероятностью g = 0,95 можно говорить, что во временном ряде имеет место тенденция дисперсии
б) Метод коэффициента Кенделла
Определим расчетное значение коэффициента Кендэла (tр):
tр = |
4 × р |
– 1, |
n × (n – 1) |
где n – количество уровней во временном ряде.
tр = |
4 × 61 |
– 1 = 0,85 |
12 × (12 – 1) |
Коэффициент Кендэла является случайной величиной, соответствует нормальному распределению и изменяется от -1 до +1. Теоретическими характеристиками коэффициента Кендэла являются математическое ожидание, которое равно нулю (Мt = 0) и дисперсия, рассчитываемая по формуле:
st2 = |
2 × (2 × n + 5) |
. |
9 × n × (n – 1) |
st2 = |
2 × (2 × 12 + 5) |
= |
58 |
= 0,049 |
9 × 12 × (12 – 1) |
1188 |
Если сопоставить расчетное и теоретическое значение коэффициента Кендэла, то может возникнуть три ситуации.
1) (0 – td ×) < tр < (0 + td ×),
где td – коэффициент доверия.
Данный вариант означает, что с вероятностью td во временном ряде нет тренда.
2) tр < (0 – td ×)
Данный вариант означает, что с выбранной вероятностью в ряде имеет место убывающая тенденция.
3) tр > (0 + td ×)
Данный вариант означает, что с выбранной вероятностью в ряде имеет место возрастающая тенденция.
При выбранной вероятности 0,95 (95%) коэффициент доверия td = 1,96.
tр > (0 + 1,96 × )
0,85 > + 0,434
Таким образом, с вероятностью 0,95 (95%) можно говорить о наличии в ряде возрастающей тенденции в среднем (тренда).
В ходе анализа временного ряда на наличие в нем тенденции среднего уровня (тренда) по методу Фостера – Стюарта и методу коэффициента Кенделла получены аналогичные результаты. Следовательно, в ряде отмечается возрастающая тенденция в среднем.
Таким образом, визуальная оценка нашла свое подтверждение в ходе аналитических расчетов с использованием соответствующих методов оценки временного ряда на наличие в нем тенденции.
3). Метод усреднения по левой и правой половине
Метод усреднения по левой и правой половине - графический метод, используется для нахождения параметров линейного тренда.
Для нахождения параметров а0 и а1 разделим исходные данные пополам и по каждой половине рассчитаем средние значения фактора и уровня ряда.
1 = |
1 + 2 + 3 + 4 + 5 + 6 |
= 3,5 |
6 |
1 = |
11,9 + 12,6 + 12,2 + 13,9 + 14,3 + 14,6 |
= 13,25 |
6 |
Другие рефераты на тему «Менеджмент и трудовые отношения»:
- Основные закономерности влияния феномена организационного лидерства на эффективность работы организации
- Первые шаги в оптимизации инновационной деятельности ИТ-службы
- Зарубежный опыт стимулирования персонала
- Роль и функции антикризисного регулирования
- Принятие управленческих решений как основа деятельности менеджера