Работа и устройство процессоров
3DNow и Enhanced 3DNow
Технология 3DNow разработана компанией AMD в ответ на реализацию поддержки инструкций SSE в процессорах Intel. Впервые (май 1998 года) 3DNow реализована в процессорах AMD K6, а дальнейшее развитие — Enhanced 3DNow — эта технология получила в процессорах Athlon и Duron. Аналогично SSE, технологии 3DNow и Enhanced 3DNow предназначены для ускорения обработки трехм
ерной графики, мультимедиа и других интенсивных вычислений.3DNow представляет собой набор из 21 инструкции SIMD, которые оперируют массивом данных в виде единичного элемента. В Enhanced 3DNow к существующим добавлены еще 24 новых инструкции. Технологии обработки данных 3DNow и Enhanced 3DNow хотя и подобны SSE, но несовместимы на уровне инструкций, поэтому производителям программного обеспечения необходимо отдельно реализовать поддержку этих технологий. Технология 3DNow, как и SSE, поддерживает операции SIMD с плавающей запятой, а также позволяет выполнять до четырех операций с плавающей запятой за один цикл. Инструкции 3DNow для операций с плавающей запятой могут использоваться вместе с командами MMX без заметного снижения быстродействия. Поддерживается и упреждающая выборка данных — механизм предварительного считывания данных из кэшпамяти. Все технологии ускорения обработки данных компаний Intel и AMD реализованы на уровне операционных систем Windows 9x и Windows NT/2000. Кроме этого, все программные интерфейсы DirectX (с версии 6) компании Microsoft и Open GL компании SGI оптимизированы для технологии 3DNow, а практически все современные видеодрайверы 3Dfx, ATI, Matrox и nVidia поддерживают 3DNow и Enhanced 3DNow. Несмотря на то что технология 3DNow поддерживается многими компьютерными играми и драйверами видеоадаптеров, существует ряд профессиональных графических приложений, к числу которых относится и Adobe Photoshop, не поддерживающих 3DNow.
SupplementalStreamingSIMDExtension 3 (SSSE3) — это обозначение, данное Intel’ом 4-му расширению системы команд. Предыдущее имело обозначение SSE3 и Intel добавил ещё один символ 'S' вместо того, чтобы увеличить номер расширения, возможно потому, что они посчитали SSSE3 простым дополнением к SSE3. Часто, до того как стало использоваться официальное обозначение SSSE3, эти новые команды назывались SSE4. Также их называли кодовыми именами Tejas New Instructions (TNI) и Merom New Instructions (MNI) по названию процессоров, где впервые Intel намеревалась поддержать эти новые команды. Появившись в Intel Core Microarchitecture, SSSE3 доступно в сериях процессоров Xeon 5100 (Server и Workstation версии), а также в процессорах Intel Core 2 (Notebook и Desktop версии).
EM64T (англ. Extended Memory 64 Technology) — реализация 64-битных расширений AMD64 процессорной архитектуры IA-32 (архитектуры x86-совместимых процессоров) фирмы Intel. Основное улучшение, обеспечиваемое EM64T — 64-битная адресация оперативной памяти, что позволяет снять присущее 32-битным процессорам ограничение в 4 гигабайта адресуемой напрямую памяти
Динамическое выполнение
Этот метод впервые использован в микросхемах P6 (процессорах шестого поколения) и позволяет процессору параллельно обрабатывать сразу несколько команд, что приводит к уменьшению времени, необходимого для выполнения той или иной задачи. Это технологическое новшество включает в себя следующие элементы.
-Предсказание множественного перехода (ветвления). Предсказание потока выполнения программы через несколько ветвлений.
-Анализ потока команд. Назначение выполнения команд по мере готовности, независимо от их порядка в оригинальной программе.
-Упреждающее выполнение. Увеличение скорости выполнения за счет опережающего просмотра счетчика команд и выполнения тех команд, к которым, вероятно, потребуется обратиться позже.
Предсказание перехода
Функция предсказания перехода, ранее применявшаяся только в универсальных процессорах старших моделей, позволяет процессору при высокоскоростном выполнении команд сохранять конвейер заполненным. Специальный модуль выборки/декодирования, включенный в процессор, использует высоко оптимизированный алгоритм предсказания перехода, позволяющий предсказывать направление и результат команд, выполняемых через несколько уровней ветвлений, обращений и возвратов. Этот модуль напоминает шахматиста, разрабатывающего несколько различных стратегий перед началом шахматной партии, предсказывая ответные действия противника на несколько ходов вперед. Благодаря предсказанию результатов выполнения команды инструкции могут выполняться практически без задержек.
Анализ потока данных
Функция анализа потока команд используется для исследования потока данных, проходящих через процессор, и выявления любых возможностей выполнения команды с изменением заданной ранее последовательности. Специальный процессорный модуль отправки/выполнения контролирует команды и позволяет выполнять их в таком порядке, который оптимизирует использование модулей множественного суперскалярного выполнения. Возможность изменять последовательность выполнения команд позволяет сохранить занятость модулей выполнения даже в случае промаха кэш-памяти или обработки каких-либо информационно-зависимых команд.
Упреждающее выполнение
Способность процессора выполнять команды с помощью опережающего просмотра существующего счетчика команд называется упреждающим выполнением. Модуль отправки/выполнения, включенный в процессор, анализирует поток данных для выполнения всех команд, существующих в буфере (накопителе) команд, и сохранения результатов их выполнения в буферных регистрах. После этого модуль изъятия анализирует содержимое пула команд на предмет наличия завершенных команд, не зависящих от данных, получаемых при выполнении других команд, или команд, имеющих неразрешенные предсказания перехода. Результаты выполнения обнаруженных завершенных команд передаются в память модулем изъятия или соответствующей стандартной архитектурой Intel в том порядке, в котором они были получены. Затем команды удаляются из буфера.В сущности, динамическое выполнение устраняет зависимость от линейной последовательности команд. Выполнение команд с изменением их последовательности позволяет максимально загрузить модуль выполнения и уменьшить время ожидания, необходимое для получения данных из памяти. Несмотря на то что порядок предсказания и выполнения команд может быть изменен, их результаты передаются в исходном порядке, для того чтобы не прерывать и не изменять течение программы. Это позволяет процессорам P6 выполнять существующее программное обеспечение архитектуры Intel точно так же, как это делали P5 (Pentium) или процессоры более ранних версий, но на целый порядок быстрее!
Архитектура двойной независимой шины
Эта архитектура (Dual Independent Bus — DIB) впервые была реализована в процессоре шестого поколения и предназначалась для увеличения пропускной способности шины процессора и повышения производительности. При наличии двух независимых шин данных для ввода-вывода процессор получает доступ к данным с любой из них одновременно и параллельно, а не последовательно, как в системе с одной шиной. Вторая, или фоновая (backside) входная шина процессора с DIB применяется кэш-памятью второго уровня, поэтому она может работать значительно быстрее, чем в том случае, если бы ей пришлось использовать (совместно с процессором) основную шину. В архитектуре DIB предусмотрено две шины: шина кэш-памяти второго уровня и шина, соединяющая процессор и основную память, или системная шина. Процессоры Pentium Pro, Celeron, Pentium II/III, Athlon и Duron могут использовать обе шины одновременно, благодаря чему снижается критичность такого параметра, как пропускная способность шины. Благодаря архитектуре двойной шины кэш-память второго уровня более современных процессоров может работать на полной скорости в ядре процессора на независимой шине, используя при этом основную шину центрального процессора (FSB) для обработки текущих данных, поступающих на микросхему и отправляемых ею. Шины работают с разной тактовой частотой. Шина FSB, или главная шина центрального процессора, соединена с системной платой, а шина кэш-памяти второго уровня — непосредственно с ядром процессора. При увеличении рабочей частоты процессора увеличивается тактовая частота кэш-памяти второго уровня. Для реализации архитектуры DIB кэш-память второго уровня перемещена с системной платы в один корпус с процессором, что позволило приблизить быстродействие кэш-памяти второго уровня к быстродействию встроенной кэш-памяти, которое значительно превосходит быстродействие памяти, помещаемой на системную плату. Чтобы поместить кэш в корпус процессора, понадобилось модифицировать гнездо процессора. DIB также позволяет системой шине выполнять одновременно несколько транзакций (а не одну последовательность транзакций), благодаря чему ускоряется поток информации внутри системы и повышается эффективность. Все средства архитектуры DIB повышают пропускную способность почти в три раза по сравнению с процессором, имеющим архитектуру одиночной шины
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности