Коробка подач радиально-сверлильного станка

3.1 Определение крутящих моментов на валах

Передаваемые крутящие моменты рассчитываем с учетом потерь возникающих в подшипниках, зубчатых колесах и т.д. по формуле :

где N — мощность электродвигателя, кВт;

ω — циклическая частота вращения, об/мин.

ηi — произведение коэффициен

тов полезного действия всех элементов конструкции, оказывающих влияние на передаваемую мощность. Из справочной литературы [1] находим общий коэффициент полезного действия:

- зубчатой цилиндрической передачи (3 пары) – 0.97

- пары подшипников качения (6 пар) – 0.99

- червячной передачи – 0,85

(далее все КПД сгруппированы, а мощность берем 5,5 кВт)

Крутящий момент на первом валу

Крутящий момент на втором валу

Крутящий момент на третьем валу

Крутящий момент на четвертом валу

Крутящий момент на пятом валу

3.3 Предварительный расчет диаметров валов

Предварительный расчет диаметров валов производим на кручение по наибольшим крутящим моментам на валах по формуле:

где - допускаемое напряжение на кручение. Для стали 45 принимаем = 20 МПа [2].

Вал 1 коробки скоростей

Вал II коробки скоростей

Вал III коробки скоростей

Принимаем ближайшие значения стандартного ряда чисел: d1= 15мм; d2=22мм; d3=300мм.

Остальные диаметры валов (диаметры под подшипниками, под муфтами, под зубчатыми колесами) выбираются конструктивно в процессе эскизной компоновки.

Расчет зубчатых передач (производился на ЭВМ – см. распечатки).

4. Уточненный расчет элементов привода

4.1 Уточненный расчет вала

По указанию руководителя проводим расчет вала 3. Схема вала, зубчатых колес и сил действующих в зацеплениях представлена на рисунке 4.1.

Определяем реакции опор: !! МА=0;

Вертикальная плоскость YZ

!! Rb.-0.29 - F„0.085 + ¥а 0.165 - 0

Проверка: !! Горизонтальная плоскость XY

!! Ма=0

!! F„0.085 + R»0-29 -Fo0.165 - 0

Определяем окружные н радиальные силы, действующие в зацеплении:

!! Mb=0

-R*0.29 + Fa-0.125 - F„0.085 - 0

Проверка:

RAr + Rer-Fa + F,,-196.6 + 689.9-1559.1-+672.6-0

Изгибающий момент в вертикальной плоскости

Мка.-0;

M.I. - Rai0.085-71.580.085 - 6.11 Нм;

M.,y-RA,0.165+F„0.080-71.580.165+244.80.105- 37.51 Нм;

Мл-0.

Изгибающий момент в горизонтальной плоскости: М.аг-0;

M.,r -- Ra,- 0.085 - -196.60.085 - -16.71Нм; М^г - -Ra.0.165 +F„0.105 - -196.60.165 +689.90.105 -40.09Нм; М.вг-0.

Суммарный изгибающий момент: Мл-Jul+Ml -О;

Л, - 4м]и + Ml» - V37.51' 40.09' - 56.7 Нм М„-0.

Коэффициент запаса прочности по касательным напряжениям:

4.2 Расчет подшипников

Проверяем долговечность подшипников на 3 валу коробки подач. В левой и правой опорах установлены радиальные однорядные подшипники легкой серии 204 по ГОСТ 8338 - 75 имеющими следующие характеристики: d = 20мм, D = 47мм, В = 14 мм, С = 12.7кН, Со = 6.2 кН. Суммарные реакции в опорах:

Эквивалентная нагрузка

Результирующий коэффициент запаса прочности:

Коэффициент запаса прочности по нормальным напряжениям:

S>[S] = 1.25 - условие выполнено.

Эквивалентный момент:

Эпюры изгибающих моментов приведены на рисунке 4.1

Уточненный расчет состоит в определении коэффициентов запаса прочности S для опасного сечения: S>!![S]

Концентрация напряжений обусловлена наличием шлицевого сечения. Диаметр вала в этом сечении 25 мм. Материал вала сталь 45 нормализованная: !! о,-750Мпа, предел выносливости !! Mпa и Мпа.

Коэффициент концентрации напряжений: !! к=1,59; к,-1.49 (З.табп .8.5,с\65).

Масштабные факторы: 6,-0,865,6,-0.75 (10, табл. 8.8, с. 1 бб), у«-0.15, у,-0.1 (10. с163 и 166)

Крутящий момент в: Tj-34.3 Нм

Суммарный изгибающий момент в сечении: M -61.2Нм

Момент сопротивления кручению (<1-25мм; «-10мм; tt-5MM)

Момент сопротивления изгибу:

Амплитуда и среднее напряжение цикла касательных напряжений:

Амплитуда нормальных напряжений изгиба:

где V-2.4 м/с -скорость протекания масла.

Принимаем внутренний диаметр трубопровода d = 4мм

Объем резервуара выбираем из условия пятиминутной производительности

насоса:

Vp = 5*1,5=7,5дм3

Система управления узлами привода

В разрабатываемой конструкции коробки скоростей используются два основных узла с автоматическим управлением: узел смены инструмента и узел переключения частот вращения.

Конструкция узла смены инструмента в курсовом проекте не разрабатывалась.

В разрабатываемом приводе применена система управления частотами вращения рычажного типа.

Перемещение тройного блока в одно из трех положений производится с помощью рычажного блоков механизма. Для нормальной работы необходимо соблюдать соотношение между конструктивными элементами входящими в рычажный механизм [5].

где !! -1 длина перемещения блока, мм;

L1 радиус поворота рычага блока, мм oj- угол поворота рукоятки, град.

Из чертежа разработанного привода определяем значения i K ц

длина перемещения блока l1=50 мм

радиус поворота рычага блока на втором валу a1=100 мм

Положение рукоятки фиксируется в определенном положении подпружиненным шариком.

!! где К*; Кт (10, табл.9.19, с.214); V - 1 вращается внутреннее кольцо Расчетная долговечность в млн. об.

Долговечность подшипников достаточна

4.3 Расчет шпоночного соединения

Шпоночное соединение рассчитываем на втором валу на месте посадки электромагнитной муфты. Вал со шпоночным пазом в этом сечении имеет размеры d =23мм; b = 8мм;

h = мм; t = 4мм; t = 3.3мм; L = 35мм.

Допустимые напряжения смятия при стальной ступице [!!т]» 120 МПа; на срез 1¾] - 0.6-tee,] - 0.6-120 -72 МПа.

Напряжения смятия и условия прочности определяем по формулам:

Условие выполнено.

Напряжения среза и условия прочности определяем по формулам:

Условие выполнено.

5. Расчет системы смазки

Выбираем циркуляционную принудительную смазку опор шпиндельного узла и зубчатых колес, а также муфт коробки скоростей. Выбор обусловлен тем, что жидкая смазка хорошо отводит тепло от опор и уносит из них продукты изнашивания, что делает излишним периодический надзор за подшипниками и муфтами. Необходимое количество масла определяем из условия:

Страница:  1  2  3 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы