Улучшение теплового и гидравлического режима системы теплоснабжения п. Победа г. Хабаровска
По напору 5 м и расходу 132 м3/час выбран насос марки ЦНШ-80 с частотой вращения 2000 об./мин. в количестве трех (один резервный).
3. Автоматизация теплового и гидравлического режима ЦТП
3.1 Цели и задачи автоматизации
Средства автоматизации (контроль, автоматическое регулирование, защита оборудования, блокировка и си
гнализация) теплового и гидравлического режима ЦТП запроектированы в целях:
- безопасной работы;
- сокращения численности обслуживающего персонала;
- экономии теплоты и электроэнергии;
- учета отпущенной тепловой энергии и холодной воды.
Уровень автоматизации технологической схемы выбран в зависимости от технологических требований и экономической целесообразности.
Задачи автоматизации ЦТП:
- местный контроль параметров (температура и давление теплоносителя в подающем и обратном трубопроводе, на перемычке, до и после теплообменных аппаратов);
- регулирование подачи теплоты на отопление и горячее водоснабжение;
- пуск и остановка оборудования;
- регулирование давления;
- учет тепловой энергии и холодной воды;
- блокировка оборудования;
- сигнализация о рабочем состоянии оборудования (рабочая и аварийная);
3.2 Принципы работы локальных схем автоматики
Приборы первого уровня автоматизации работают по общепринятым правилам. При включении и отключении насосного оборудования предусмотрена блокировка работы электродвигателей повысительно-циркуляционных и подмешивающего насосов. Резервные насосы сблокированы с основными насосами по принципу “начало работы резервного оборудования при отключении основного”.
Регулирование температуры в подающем трубопроводе горячего водоснабжения осуществляется с помощью клапана на подающем трубопроводе сетевой воды к теплообменнику второй ступени. При повышении температуры в подающем трубопроводе горячего водоснабжения выше требуемой происходит прикрывание клапана сетевой воды на теплообменник второй ступени. При понижении температуры происходит обратный процесс.
Приготовление теплоносителя для системы отопления производится с помощью трехходового смесительного клапана по графику регулирования в зависимости от температуры наружного воздуха. При повышении температуры на подающем и обратном трубопроводе системы отопления происходит увеличение подмеса воды из обратного трубопровода. При понижении соответствующих температур в подающем трубопроводе системы отопления происходит уменьшение подмеса воды из обратного трубопровода.
Защита системы отопления от повышения давления производится установкой регулирующего клапана, настроенного на поддержание давления в системе отопления не более 6 кг/см2. Клапан, с регулированием давления «после себя», при увеличении давления сверх установленного, прикрывается, тем самым, понижая давление. При понижении давления происходит открытие клапана, сопротивление клапана уменьшается и за счет этого давление после клапана возрастает.
Аналогичный клапан установлен и на вводе водопровода к теплообменнику горячего водоснабжения.
3.3 Приборы и средства автоматизации
Приборы и средства автоматизации принципиальной схемы ЦТП представлены в таблице 3.1.
Таблица 3.1 – Приборы и средства автоматизации
4. Организация строительного производства
По заданию на дипломное проектирование в разделе организация строительного производства необходимо разработать проект производства работ на реконструкцию участка теплосети участке Руднева 33-45 в составе: календарный план производства работ, графики поступления на объект строительных конструкций и потребности в рабочих кадрах, технологические схемы с описанием последовательности и метода работ.
Монтажная схема и продольный профиль участка теплосети приведен в на листе 5 графической части дипломного проекта.
4.1 Определение объемов земляных работ
При разработке траншей с наклонными стенками для определения объема земляных работ вычисляют площади поперечного сечения на пикетах и используют формулу Мурзо:
(4.1)
где Fср - средняя площадь поперечного сечения, м2;
m – крутизна откоса, по [11,17] для суглинка равна 0,5;
h1, h2 – глубина траншеи в начале и конце участка, берется из продольного профиля сети;
L – длина расчетного участка;
Средняя площадь поперечного сечения Fср определяется по формуле:
(4.2)
где b – ширина траншеи по низу, принимается в зависимости от размера канала при подземной канальной прокладке;
hср – полусумма глубин траншеи в начале и конце участка.
Расчеты по (4.1-4.2) сведены в таблицу 4.1.
Таблица 4.1 Ведомость объемов земляных работ
№ уч. |
Рабочая отметка |
Полусумма рабочих отметок
|
Поправка
|
Расчетная площадь поперечного сечения Fср., м2 | Длина участка L, м | Объем работ, Vр, м3 |
1 2 3 4 5 6 7 8 9 |
1,30 2,10 1,85 1,81 1,87 1,14 1,30 2,00 1,40 |
1,70 1,97 1,83 1,84 1,50 - 1,65 1,7 |
0 0 0 0 0 - 0 0 |
7,99 9,79 8,84 8,91 6,75 - 7,67 7,99 |
33 40 52 80 69 - 39 22 |
264 392 460 713 465 - 299 176 |
ИТОГО |
335 |
2769 |
При подсчете объема грунта отвала выброшенного грунта необходимо учитывать, что при разработке грунт разрыхляется и поэтому его объем увеличивается, что характеризуется коэффициентом первоначального разрыхления.
С течением времени грунт постепенно уплотняется и разрыхленность его становится меньше первоначальной, что характеризуется коэффициентом остаточного разрыхления – Ко.р.
Объем грунта, необходимого для засыпки траншеи определяется по формуле:
(4.3)
где Vо.з. – объем грунта обратной засыпки, м3;
Vр – объем траншеи по геометрическим обмерам (расчетный);
Vс – объем сооружения, м3;
Ко.р. – коэффициент остаточного разрыхления.
Объем грунта, подлежащего выгрузке на транспорт: