Современные энергоактивные дома

Например, ветровые энергетические ресурсы континентов, которые могут быть когда-либо использованы (с учетом неизбежных потерь), оцениваются сегодня в 40 ТВт, при этом современное энергопотребление человечества составляет около 10 Твт. Биомасса уже сегодня обеспечивает до 13% мирового производства энергии. Однако, природные энергетические ресурсы распределены весьма неравномерно, что выражается

существенными отличиями природно-климатических условий, даже в границах одного климатического района. Поэтому, в каждом конкретном случае экономическая эффективность, т.е. предпочтительность использования того или иного природного источника энергии определяется местными условиями и критериями: наличием источника в районе строительства, его мощностью (величиной возможных энергопоступлений) и размерами затрат, необходимых для технического обеспечения эксплуатации источника в данном регионе. Системы энергоснабжения зданий и населенных мест, использующие энергию природной среды, часто оказываются экономически эффективнее традиционных не только вследствие значительного снижения потребления обычных дорогостоящих топливных ресурсов, но и как более дешевые в строительстве (монтаже и эксплуатации, например, в условиях вечномерзлых грунтов, слаборазвитой или недостаточно мощной имеющейся инженерной инфраструктуры (что особенно характерно для реконструируемых густонаселенных, а также вновь осваиваемых малонаселенных мест).

4. Достоинства альтернативной энергетики.

Одним из важнейших достоинств альтернативной энергетики является ее экологичность: процесс получения энергии от возобновляемых источников не сопровождается образованием загрязняющих окружающую среду отходов, не ведет к разрушению естественных ландшафтов, практически исключает опасные для биологических субстанций аварийные ситуации, т.е. никак не угрожает экологическому равновесию экосистем. Исключение составляет использование биомассы, предполагающее получение энергии посредством традиционного сжигания твердого биотоплива-концентрата и биогаза, в результате чего образуются углекислые соединения, способствующие усилению "парникового" эффекта в атмосфере; кроме того, использование биогаза, содержащего до 70% метана, требует усиленных мер обеспечения безопасности. Сумма этих обстоятельств ставит под сомнение экологическую целесообразность широкого использования биомассы в целях производства энергии Кроме биоэнергоактивных зданий, типологический спектр которых довольно ограничен, в зависимости от принятой ориентации на использование того или иного (или нескольких одновременно) природного источника энергии различают:

· гелиоэнергоактивные здания (эффективно использующие энергию солнца);

· ветроэнергоактивные здания;

· здания, использующие гео-, гидро- и аэротермальную энергию;

· здания с комбинированным использованием различных природных источников энергии. (Н. П. Селиванов, А. И. Мелуа, С. В. Зоколей)

5. Проектирование энергоактивных зданий.

5.1. Проблемы проектирования энергоактивных зданий.

Наиболее важной проблемой при проектировании зданий, использующих энергию природной среды, является поиск путей и средств эффективного управления процессами распределения энергетических (воздушных, тепловых, световых и др.) потоков с целью поддержания оптимальных микроклиматических параметров помещений в условиях циклических (суточных, сезонных) и периодических (облачность, осадки) изменений параметров внешней среды. При этом ключевое значение имеет решение трех задач:

1. как собрать энергию (как получить необходимое количество энергии, учитывая ее определенную рассеянность во внешней среде, т.е. компенсировать недостаточную мощность естественных энергетических потоков);

2. как хранить(аккумулировать)собранную энергию (как компенсировать характерное несовпадение во времени периодов и суточно-сезонную неравномерность поступления и потребления энергии);

3. как распределять энергию (как обеспечить регулируемое распределение энергии в здании для обеспечения требующихся в данный момент и в данное время функционально-технологических и микроклиматических параметров его элементов).

5.2. Пути решения.

Два принципиально отличных подхода к организации среды обитания человека - техноцентрический и экологический - определяют две группы средств для решения указанных задач, обусловливая, как показывает практика, совершенно разные качества получаемых в результате архитектурно-градостроительных, конструктивных и инженерно-технических решений.

1. Так, техноцентрический (традиционный) подход, рассматривающий здание как внутренне замкнутую систему, предполагает приоритетность задач по усилению изоляционных свойств ограждений и выражается использованием, преимущественно, инженерно-технических, или активных, средств повышения энергоэффективности здания, и в частности, использования природных источников энергии: сбор, хранение и распределение энергии осуществляется с помощью специальных систем технического оборудования, которыми оснащаются здания, а также других инженерных объектов, что предполагает "принудительный" характер протекания энергетических процессов, обеспечивающий возможность получения большого количества высококонцентрированной энергии. Однако, при этом инженерно-технические средства не только "дают", но и "берут": помимо довольно высокой себестоимости, они требуют расходов на содержание, технической осведомленности пользователя и квалифицированного обслуживающего персонала, что в сумме ограничивает область их экономически эффективного применения крупными общественными зданиями и промышленными объектами с высокой и избыточной энергоактивностью.

2.Экологический подход к проектированию энергоэффективных (и в частности, энергоактивных) зданий, рассматривая здание как изначально тесно взаимосвязанный с внешней средой организм и следуя логике природных явлений, ставит целью решение энергетических задач на основе целенаправленной организации особой материально-пространственной среды, обеспечивающей регулируемое, но естественное протекание требующихся энергетических процессов: само здание, его конструкции и пространства, объекты окружающей среды выполняют роль энергетической установки Таким образом, приоритетное значение приобретают задачи по организации эффективных естественных обменных процессов внутри объема здания и с внешней средой, (в т.ч. в целях использования энергии природной среды), решаемые, преимущественно, ландшафтно-градостроительными, объемно-планировочными и конструктивными, или пассивными, средствами; технические системы при этом выполняют простые вспомогательные (в основном, корректирующие) функции. Энергетическая эффективность пассивных систем пока невысока: сегодня ими можно обеспечить около 50% потребности зданий в энергии. Однако, их сравнительно небольшая себестоимость, хорошие эксплуатационные характеристики (в т.ч. простота использования) и подчеркнутая экологичность обусловили целесообразность их применения при проектировании любых архитектурных объектов. Более того, результаты многих программ по энергосбережению в строительстве, полученные в конце 1980-х годов, в целом, показали более высокую экономическую эффективность пассивных энергосистем относительно большинства активных: решающее значение приобрели стоимостные и эксплуатационные качества. (Т. А. Маркус, Э. Н. Моррис).

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Строительство и архитектура»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы