Энергия, энтропия, энергетика. Идеи И. Пригожина и их значение для современной науки

Энтропия широко применяется и в других областях науки: в статистической физике как мера вероятности осуществления какого-либо макроскопического состояния; в теории информации как мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Эти трактовки имеют глубокую внутреннюю связь. Например, на основе представлений об информационной энтропии можно вывести все важн

ейшие положения статистической физики.

Понятие энтропия, как показал впервые энтропию Шрёдингер (1944), существенно и для понимания явлений жизни. Живой организм с точки зрения протекающих в нём физико-химических процессов можно рассматривать как сложную открытую систему, находящуюся в неравновесном, но стационарном состоянии. Для организмов характерна сбалансированность процессов, ведущих к росту энтропии, и процессов обмена, уменьшающих её. Однако жизнь не сводится к простой совокупности физико-химических процессов, ей свойственны сложные процессы саморегулирования. Поэтому с помощью понятия энтропии нельзя охарактеризовать жизнедеятельность организмов в целом.

Энтропия, характеризуя вероятность осуществления данного состояния системы, согласно (1) является мерой его неупорядоченности. Изменение энтропии DS обусловлено как изменением р, V и Т, так и процессами, протекающими при р, Т = const и связанными с превращением веществ, включая изменение их агрегатного состояния, растворение и химическое взаимодействие.

Изотермическое сжатие вещества приводит к уменьшению, а изотермическое расширение и нагревание - к увеличению его Энтропия, что соответствует уравнениям, вытекающим из первого и второго начал термодинамики:

(1);

(3)

В соответствии с (3) энтропия измеряется в кал/(моль· К) (энтропийная единица - э. е.) и дж/(моль·К). При расчётах обычно применяют значения Энтропия в стандартном состоянии, чаще всего при 298,15 К (25 °С), т. е. S0298.

Энтропия увеличивается при переходе вещества в состояние с большей энергией. D S сублимации > DS парообразования >> DS плавления >DS полиморфного превращения. Например, энтропия воды в кристаллическом состоянии равна 11,5, в жидком - 16,75, в газообразном - 45,11 э. е.

Чем выше твёрдость вещества, тем меньше его энтропия; так, энтропия алмаза (0,57 э. е.) вдвое меньше энтропии графита (1,37 э. е.). Карбиды, бориды и другие очень твёрдые вещества характеризуются небольшой Энтропия аморфного тела несколько больше энтропии кристаллического. Возрастание степени дисперсности системы также приводит к некоторому увеличению её энтропии.

Энтропия возрастает по мере усложнения молекулы вещества; так, для газов N2О, N2O3 и N2O5 Энтропия составляет соответственно 52,6; 73,4 и 85,0 э. е. При одной и той же молекулярной массе энтропия разветвленных углеводородов меньше энтропии неразветвлённых; энтропия циклоалкана (циклана) меньше энтропии соответствующего ему алкена.

Энтропия простых веществ и соединений (например, хлоридов ACIn), а также её изменения при плавлении и парообразовании являются периодическими функциями порядкового номера соответствующего элемента. Периодичность изменения энтропии для сходных химических реакций типа 1/n Акрист + 1/2Сl2газ = 1/n ACln крист практически не проявляется. В совокупности веществ-аналогов, например АСl4газ (А - С, Si, Ge, Sn, Pb) энтропия изменяется закономерно. Сходство веществ (N2 и СО; CdCl2 и ZnCl2; Ag2Se и Ag2Te; ВаСОз и BaSiO3; PbWO4 и РЬМоО4) проявляется в близости их энтропии. Выявление закономерности изменения энтропии в рядах подобных веществ, обусловленного различиями в их строении и составе, позволило разработать методы приближённого расчёта энтропии.

Знак изменения энтропии при химической реакции DS х. р. определяется знаком изменения объёма системы DV х. р.; однако возможны процессы (изомеризация, циклизация), в которых DS х. р. № 0, хотя DV х. р. » 0. В соответствии с уравнением DG = DН - ТDS (G - гиббсова энергия, Н - энтальпия) знак и абсолютное значение DS х. р. важны для суждения о влиянии температуры на равновесие химическое. Возможны самопроизвольные экзотермические. процессы (DG < 0, DH < 0), протекающие с уменьшением энтропии (DS < 0). Такие процессы распространены, в частности, при растворении (например, комплексообразование), что свидетельствует о важности химических взаимодействий между участвующими в них веществами.[3, 157-163]

Термодинамика и энтропия.

Так, для термодинамической системы, совершающей квазистатический (бесконечно медленно) циклический процесс, в котором система последовательно получает малые количества теплоты dQ при соответствующих значениях абсолютной температуры Т, интеграл от «приведенного» количества теплоты dQ/ Т по всему циклу равен нулю

т.н. равенство Клаузиуса

Это равенство, эквивалентное второму началу термодинамики для равновесных процессов, Клаузиус получил, рассматривая произвольный циклический процесс как сумму очень большого, в пределе бесконечного, числа элементарных обратимых Карно циклов. Математически равенство Клаузиуса необходимо и достаточно для того, чтобы выражение

dS = dQ/T (1)

представляло собой полный дифференциал функции состояния S, названное «энтропия» (дифференциальное определение энтропии). Разность энтропии системы в двух произвольных состояниях А и В (заданных, например, значениями температур и объемов) равна

(2)

(интегральное определение энтропии). Интегрирование здесь ведется вдоль пути любого квазистатического процесса, связывающего состояния А и В, при этом, согласно равенству Клаузиуса, приращение энтропии DS = SB - SA не зависит от пути интегрирования.

Т. о., из второго начала термодинамики следует, что существует однозначная функция состояния S, которая при квазистатических адиабатных процессах (dQ = 0) остаётся постоянной. Процессы, в которых энтропия остаётся постоянной, называются изоэнтропийными. Примером может служить процесс, широко используемый для получения низких температур, - адиабатное размагничивание. При изотермических процессах изменение энтропии равно отношению сообщенной системе теплоты к абсолютной температуре. Например, изменение энтропии при испарении жидкости равно отношению теплоты испарения к температуре испарения при условии равновесия жидкости с её насыщенным паром.

Согласно первому началу термодинамики (закону сохранения энергии), dQ = dU+pdV, т. е. сообщаемое системе количество теплоты равно сумме приращения внутренней энергии dU и совершаемой системой работы pdV, где р - давление, V - объём системы. С учётом первого начала термодинамики дифференциальное определение энтропии принимает вид

(3)

откуда следует, что при выборе в качестве независимых переменных внутренней энергии U и объёма V частные производные Энтропия связаны с абсолютной температурой и давлением соотношениями:

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы