Методы расчета электрических цепей постоянного тока
Введение
Общая задача анализа электрической цепи состоит в том, что по заданным параметрам (ЭДС, ТДС, сопротивлениям) необходимо рассчитать токи, мощность, напряжение на отдельных участках.
Рассмотрим более подробно методы расчета электрических цепей.
1. Метод уравнений Кирхгофа
Этот метод является наиболее общим методом решения задачи анализа электрической цепи.
Он основан на решении системы уравнений, составленных по первому и второму законам Кирхгофа относительно реальных токов в ветвях рассматриваемой цепи. Следовательно, общее число уравнений p равно числу ветвей с неизвестными токами. Часть этих уравнений составляется по первому закону Кирхгофа, остальные – по второму закону Кирхгофа. В схеме содержащей q узлов, по первому закону Кирхгофа можно составить q уравнений. Однако, одно из них (любое) является суммой всех остальных. Следовательно, независимых уравнений, составленных по первому закону Кирхгофа, будет .
По второму закону Кирхгофа должны быть составлены недостающие m уравнений, число которых равно .
Для записи уравнений по второму закону Кирхгофа необходимо выбрать m контуров так, чтобы в них вошли в итоге все ветви схемы.
Рассмотрим данный метод на примере конкретной схемы (рис. 1).
Рис. 1
Прежде всего, выбираем и указываем на схеме положительные направления токов в ветвях и определяем их число p. Для рассматриваемой схемы p = 6. Следует отметить, что направления токов в ветвях выбираются произвольно. Если принятое направление какого-либо тока не соответствует действительному, то числовое значение данного тока получается отрицательным.
Далее определяем число узлов схемы q= 4.
Следовательно, число уравнений по первому закону Кирхгофа равно q – 1 = 3.
Число уравнений, составленных по второму закону Кирхгофа
m= p - (q – 1) = 3.
Выбираем узлы и контуры, для которых будем составлять уравнения, и обозначаем их на схеме электрической цепи.
Уравнения по первому закону Кирхгофа:
Уравнения по второму закону Кирхгофа:
Решая полученную систему уравнений, определяем токи ветвей. Расчет электрической цепи не обязательно заключается в вычислении токов по заданным ЭДС источников напряжения. Возможна и другая постановка задачи – вычисление ЭДС источников по заданным токам в ветвях схемы. Задача может иметь и смешанный характер – заданы токи в некоторых ветвях и ЭДС некоторых источников. Нужно найти токи в других ветвях и ЭДС других источников. Во всех случаях число составленных уравнений должно быть равно числу неизвестных величин. В состав схемы могут входить и источники энергии, заданные в виде источников тока. При этом ток источника тока учитывается как ток ветви при составлении уравнений по первому закону Кирхгофа.
Контуры для составления уравнений по второму закону Кирхгофа должны быть выбраны так, чтобы ни один расчетный контур не проходил через источник тока.
Рассмотрим схему электрической цепи, представленную на рис. 2.
Рис. 2
Выбираем положительные направления токов и наносим их на схему. Общее число ветвей схемы равно пяти. Если считать ток источника тока J известной величиной, то число ветвей с неизвестными токами p = 4.
Схема содержит три узла (q = 3). Следовательно, по первому закону Кирхгофа необходимо составить q – 1 = 2 уравнения. Обозначим узлы на схеме. Число уравнений составленных по второму закону Кирхгофа m = p - (q – 1) =2.
Выбираем контуры таким образом, чтобы ни один из них не проходил через источник тока, и обозначаем их на схеме.
Система уравнений, составленная по законам Кирхгофа, имеет вид:
Решая полученную систему уравнений, найдем токи в ветвях. Метод уравнений Кирхгофа применим для расчета сложных как линейных, так и нелинейных цепей, и в этом его достоинство. Недостаток метода состоит в том, что при расчете сложных цепей необходимо составлять и решать число уравнений, равное числу ветвей p.
Заключительный этап расчета – проверка решения, которая может быть выполнена путем составления уравнения баланса мощности.
Под балансом мощностей электрической цепи понимается равенство мощностей, развиваемой всеми источниками энергии данной цепи, и мощности, потребляемой всеми приемниками той же цепи (закон сохранения энергии).
Если на участке цепи ab имеется источник энергии с ЭДС и по этому участку протекает ток , то мощность, развиваемая этим источником, определяется произведением .
Каждый из множителей этого произведения может иметь положительный или отрицательный знак относительно направления ab. Произведение будет иметь положительный знак, если знаки расчетных величин и совпадают (мощность, развиваемая данным источником, отдается приемникам цепи). Произведение будет иметь отрицательный знак если знаки и противоположны (источник потребляет мощность, развиваемую другими источниками). Примером может служить аккумулятор, находящийся в режиме зарядки. В этом случае мощность данного источника (слагаемое ) входит в алгебраическую сумму мощностей, развиваемых всеми источниками цепи, с отрицательным знаком. Аналогично определяется величина и знак мощности, развиваемой источником тока. Если на участке цепи mn имеется идеальный источник тока с током , то мощность развиваемая этим источником, определяется произведением . Как и в источнике ЭДС знак произведения определяется знаками множителей.
Теперь можно записать общий вид уравнения баланса мощностей
.
Для цепи, представленной на рис2.2 уравнение баланса мощности имеет вид
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода