Электрокинетический потенциал и методы его определения
Введение
Электрокинетические явления были открыты профессором Московского университета Ф.Ф.Рейсом в 1808г. при исследовании электролиза воды.
Явление перемещения жидкости в пористых телах под действием электрического поля получило название электроосмоса, а явление перемещения частиц – электрофореза.
В 1859г. Квинке обнаружил явление, обратное электроосмосу, т.
е. при течении жидкости через пористое тело под действием перепада давлений возникает разность потенциалов. Возникновение разности потенциалов Квинке наблюдал при течении воды и водных растворов через разнообразные пористые материалы (глина, дерево, графит и др.). Это явление получило название потенциала течения (или потенциала протекания).
Количественное исследование эффекта, обратного электрофорезу, впервые было выполнено Дорном в 1878г. Он измерял возникающую разность потенциалов при седиментации частиц суспензии кварца в центробежном поле. Явление возникновения разности потенциалов при осаждении дисперсной фазы получило название потенциала седиментации (или потенциала оседания).
Таким образом, по причинно-следственным признакам электрокинетические явления в дисперсных системах делят на две группы. К первой группе относят явления, при которых относительное движение фаз обусловлено электрической разностью потенциалов; это электроосмос и электрофорез. Ко второй группе электрокинетических явлений принадлежат потенциал течения и потенциал седиментации, при которых относительное движение фаз вызывает возникновение электрической разности потенциалов.
Наибольшее практическое применение получили электрофорез и электроосмос.
Электрокинетические явления в течение длительного времени не находили объяснения. Теперь, на основании рассмотренных представлений об электрических свойствах границы раздела, причиной этих явлений можно считать существование двойного электрического слоя (ДЭС). Действительно, разноименность зарядов фаз приводит в случае неподвижного пористого тела в электрическом поле к перемещению подвижных противоионов вместе с жидкой фазой к соответствующему полюсу (одноименного с твердой фазой знака). Действие же внешней механической силы (давление) вызывает вынос подвижного заряда диффузного слоя и, следовательно, возникновение разности потенциалов. Потенциал, возникающий на плоскости скольжения при отрыве части диффузного слоя, называется электрокинетическим потенциалом или ζ-потенциалом. Дзета-потенциал, отражая свойства двойного электрического слоя, характеризует природу фаз и межфазного взаимодействия.
Из этого качественного рассмотрения видно, что действующая электрическая сила (в явлениях электроосмоса и электрофореза), равная произведению заряда на градиент потенциала, тем больше, чем больше зарядов диффузного слоя оказывается в подвижной части жидкости. От этих зарядов зависит и величина конвективного тока и, следовательно величины потенциалов течения и оседания.
Таким образом, все эти явлении должны быть развиты тем сильнее, чем больше подвижный заряд диффузного слоя и ζ-потенциал границы скольжения. Отсюда следует, что ζ-потенциал есть мера интенсивности элетрокинетических явлений. С другой стороны, измеряя параметры этих явлений, можно вычислить ζ-потенциал на основе теории, связывающей его с этими параметрами.
Электроосмос
Рис. 1. Изменение потенциала ψ и скорости u с расстоянием от поверхности.
Рассмотрим бесконечно тонкий слой жидкости толщиной dx (δ R, поверхность практически плоская), движущийся под действием внешнего электрического поля напряженностью X, направленного параллельно границе скольжения (рис. 1).
Электрическая сила действует на отдельные ионы, но, согласно закону Ньютона, она уравновешивается силой трения, возникающей в жидкости. Таким образом, в стационарном состоянии и в ламинарном режиме суммарная сила, действующая на каждый слой, равна нулю и каждый слой жидкости толщиной dx движется с постоянной скоростью параллельно границе скольжения. Это означает, что электрическая сила, действующая на объемный заряд, должна уравновешиваться силами трения соседних слоев, равными η (du/dx), на единицу площади боковой поверхности
|
где ρ – объемная плотность заряда; η – коэффициент вязкости; u – линейная скорость движения жидкости.
Исходя из принципа суперпозиции полей и учитывая уравнение Пуассона , получим:
|
В результате интегрирования, выполняемого при граничных условиях
находим:
|
где uэо – электроосмотическая скорость; знак минус означает, что жидкость движется против поля, если ζ > 0
|
где R – сопротивление; к – удельная электропроводность жидкости; l и A – эффективные длина и площадь сечения пор.
Подстановка значений uэо и Х в уравнение (3) дает:
|
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода