Энергия, энтропия, энергетика. Идеи И. Пригожина и их значение для современной науки

(4) и (5)

Эти выражения представляют собой уравнения состояния системы (первое - калорическое, второе - термическое). Уравнение (4) лежит в основе определения абсолютной температуры.

Формула (2) определяет энтропию лишь с точностью до аддитив

ной постоянной (т. е. оставляет начало отсчёта энтропии произвольным). Абсолютное значение энтропии позволяет установить третье начало термодинамики, или Нернста теорему: при стремлении абсолютной температуры к нулю разность DS для любого вещества стремится к нулю независимо от внешних параметров. Поэтому: энтропия всех веществ при абсолютном нуле температуры можно принять равной нулю (эту формулировку теоремы Нернста предложил в 1911 М. Планк). Основываясь на ней, за начальную точку отсчёта энтропии принимают = 0 при Т = 0.

Важность понятия энтропии для анализа необратимых (неравновесных) процессов: также была показана впервые Клаузиусом. Для необратимых процессов интеграл от приведённой теплоты dQ / Т по замкнутому пути всегда отрицателен

(, т. н. неравенство Клаузиуса).

Это неравенство - следствие теоремы Карно: кпд частично или полностью необратимого циклического процесса всегда меньше, чем кпд обратимого цикла. Из неравенства Клаузиуса вытекает, что

6)

поэтому энтропия адиабатически изолированной системы при необратимых процессах может только возрастать.

Т. о., энтропия определяет характер процессов в адиабатической системе: возможны только такие процессы, при которых энтропия либо остаётся неизменной (обратимые процессы), либо возрастает (необратимые процессы). При этом не обязательно, чтобы возрастала энтропия каждого из тел, участвующего в процессе. Увеличивается общая сумма энтропии тел, в которых процесс вызвал изменения.

Термодинамика неравновесных процессов и энтропия

Термодинамика неравновесных процессов, раздел физики, изучающий неравновесные процессы (диффузию, вязкость, термоэлектрические явления и др.) на основе общих законов термодинамики. Для количественного изучения неравновесных процессов, в частности определения их скоростей в зависимости от внешних условий, составляются уравнения баланса массы, импульса, энергии, а также энтропии для элементарных объемов системы, и эти уравнения исследуются совместно с уравнениями рассматриваемых процессов. Термодинамика неравновесных процессов — теоретическая основа исследования открытых систем, в т. ч. живых существ.

Термодинамическому равновесию адиабатической системы соответствует состояние с максимумом энтропии может иметь не один, а несколько максимумов, при этом система будет иметь несколько состояний равновесия. Равновесие, которому соответствует наибольший максимум энтропии, называется абсолютно устойчивым (стабильным). Из условия максимальности энтропии адиабатические системы в состоянии равновесия вытекает важное следствие: температура всех частей системы в состоянии равновесия одинакова.

Понятие «Энтропия» применимо и к термодинамически неравновесным состояниям, если отклонения от термодинамического равновесия невелики и можно ввести представление о локальном термодинамическом равновесии в малых, но ещё макроскопических объёмах. Такие состояния можно охарактеризовать термодинамическими параметрами (температурой, давлением и т. д.), слабо зависящими от пространственных координат и времени, а энтропия термодинамически неравновесного состояния определить как энтропию равновесного состояния, характеризующегося теми же значениями параметров. В целом энтропия неравновесной системы равна сумме энтропии её частей, находящихся в локальном равновесии.

Термодинамика неравновесных процессов позволяет более детально, чем классическая термодинамика, исследовать процесс возрастания энтропии и вычислить количество энтропии, образующейся в единице объёма в единицу времени вследствие отклонения системы от термодинамического равновесия - производство энтропии. Производство энтропии всегда положительно и математически выражается квадратичной формой от градиентов термодинамических параметров (температуры, гидродинамической скорости или концентраций компонентов смеси) с коэффициентами, называемыми кинетическими (см. Онсагера теорема).

Статистическая физика связывает энтропию с вероятностью осуществления данного макроскопического состояния системы. Энтропия определяется через логарифм статистического веса W данного равновесного состояния

S= k ln W (E, N), (7)

где k - Больцмана постоянная, W (E, N) - число квантовомеханических уровней в узком интервале энергии DЕ вблизи значения энергии Е системы из N частиц. Впервые связь энтропии с вероятностью состояния системы была установлена Л. Больцманом в 1872: возрастание энтропии системы обусловлено её переходом из менее вероятного состояния в более вероятное. Иными словами, эволюция замкнутой системы осуществляется в направлении наиболее вероятного распределения энергии по отдельным подсистемам. [4, 147]

В отличие от термодинамики статистическая физика рассматривает особый класс процессов - флуктуации, при которых система переходит из более вероятного состояния в менее вероятное, и её энтропия уменьшается. Наличие флуктуаций показывает, что закон возрастания энтропии выполняется только в среднем для достаточно большого промежутка времени.

Энтропия в статистической физике тесно связана с информационной энтропией, которая служит мерой неопределённости сообщений данного источника (сообщения описываются множеством величин х1, x2, ., xn, которые могут быть, например, словами какого-либо языка, и соответствующих вероятностей p1, p2, ., pn появления величин x1, x2, ., xn в сообщении). Для определённого (дискретного) статистического распределения вероятностей рк информационной энтропией называют величину

при условии

(8)

Значение Ни равно нулю, если какое-либо из pk равно 1, а остальные - нулю, т. е. неопределённость в информации отсутствует. Энтропия принимает наибольшее значение, когда pk равны между собой и неопределённость в информации максимальна. Информационная энтропия, как и термодинамическая, обладает свойством аддитивности (энтропия нескольких сообщений равна сумме энтропии отдельных сообщений). К. Шеннон показал, что энтропия источника информации определяет критическое значение скорости «помехоустойчивой» передачи информации по конкретному каналу связи. Из вероятностной трактовки информационной энтропии могут быть выведены основные распределения статистической физики: каноническое распределение Гиббса, которое соответствует максимальному значению информационной энтропии при заданной средней энергии, и большое каноническое распределение Гиббса - при заданных средней энергии и числа частиц в системе. [3, 214]

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы