Математическая постановка краевых задач уравнения теплопроводности
Краевые условия
Дифференциальное уравнение теплопроводности является математической моделью целого класса явлений теплопроводности и само по себе ничего не говорит о развитии процесса теплопереноса в рассматриваемом теле. При интегрировании дифференциального уравнения в частных производных получаем бесчисленное множество различных решений. Чтобы получить из этого множ
ества одно частное решение, соответствующее определенной конкретной задаче, необходимо иметь дополнительные данные, не содержащиеся в исходном дифференциальном уравнении теплопроводности. Этими дополнительными условиями, которые в совокупности с дифференциальным уравнением (или его решением) однозначно определяют конкретную задачу теплопроводности, являются распределение температуры внутри тела (начальные или временные условия), геометрическая форма тела и закон взаимодействия между окружающей средой и поверхностью тела (граничные условия).
Для тела определенной геометрической формы с определенными (известными) физическими свойствами совокупность граничных и начальных условий называется краевыми условиями. Итак, начальное условие является временным краевым условием, а граничные условия – пространственным краевым условием. Дифференциальное уравнение теплопроводности вместе с краевыми условиями составляет краевую задачу уравнения теплопроводности (или короче – тепловую задачу).
Начальное условие определяется заданием закона распределения температуры внутри тела в начальный момент времени, т. е.
Т (х, у, z, 0) = f (х, у, z), (3.1)
где f (х, у, z) — известная функция.
Во многих задачах принимают равномерное распределение температуры в начальный момент времени; тогда
Т (х, у, z, 0) = То = const. (3.2)
Граничное условие может быть задано различными способами.
1. Граничное условие первого рода состоит в задании распределения температуры по поверхности тела в любой момент времени,
Тs (τ) = f(τ) (3.3)
где Тs (τ) – температура на поверхности тела.
Изотермическое граничное условие представляет частный случай условия 1-го рода. При изотермической границе температуру поверхности тела принимают постоянной Ts= const, как, например, при интенсивном омывании поверхности жидкостью с определенной температурой.
2. Граничное условие второго рода состоит в задании плотности теплового потока для каждой точки поверхности тела как функции времени, т. е.
qs (τ) = f(τ). (3.4)
Условие 2-го рода задает величину теплового потока на границе, т.е. кривая температуры может иметь любую ординату, но обязательно заданный градиент. Простейший случай граничного условия второго рода состоит в постоянстве плотности теплового потока:
qs (τ) = qc = const.
Адиабатическая граница представляет частный случай условия 2-го рода. При адиабатическом условии тепловой поток через границы равен нулю. Если теплообмен тела с окружающей средой незначителен в сравнении с тепловыми потоками внутри тела, поверхность тела можно считать практически непропускающей тепла. Очевидно, что в любой точке адиабатической границы s удельный тепловой поток и пропорциональный ему градиент по нормали к поверхности равны нулю.
3. Обычно граничное условие третьего рода характеризует закон конвективного теплообмена между поверхностью тела и окружающей средой при постоянном потоке тепла (стационарное температурное поле). В этом случае количество тепла, передаваемого в единицу времени с единицы площади поверхности тела в окружающую среду с температурой Тс в процессе охлаждения (Тs > Тс), прямо пропорционально разности температур между поверхностью тела и окружающей средой, т. е.
qs = α (Тs - Тс), (3.5)
где α — коэффициент пропорциональности, называемый коэффициентом теплообмена (вm/м2·град).
Коэффициент теплообмена численно равен количеству тепла, отдаваемого (или получаемого) единицей площади поверхности тела в единицу времени при разности температур между поверхностью и окружающей средой в 1°.
Соотношение (3.5) можно получить из закона теплопроводности Фурье, полагая, что при обтекании поверхности тела газом или жидкостью передача тепла от газа к телу вблизи его поверхности происходит по закону Фурье:
qs =-λг·(∂Тг/∂n)s·1n= λг·(Ts-Tc)·1n/∆ =α·(Ts-Tc)·1n(3.6)
где λг — коэффициент теплопроводности газа, ∆ — условная толщина пограничного слоя, α = λг /∆.
Следовательно, вектор теплового потока qs направлен по нормали п к изотермической поверхности, его скалярная величина равна qs.
Условная толщина пограничного слоя ∆ зависит от скорости движения газа (или жидкости) и его физических свойств. Поэтому коэффициент теплообмена зависит от скорости движения газа, его температуры и изменяется вдоль поверхности тела в направлении движения. В качестве приближения можно считать коэффициент теплообмена постоянным, не зависящим от температуры, и одинаковым для всей поверхности тела.
Граничные условия третьего рода могут быть использованы и при рассмотрении нагревания или охлаждения тел лучеиспусканием. По закону Стефана-Больцмана лучистый поток тепла между двумя поверхностями равен
qs(τ) = σ*[T4s(τ) –T4a], (3.7)
где σ* — приведенный коэффициент лучеиспускания, Тa — абсолютная температура поверхности тепловоспринимающего тела.
Коэффициент пропорциональности σ* зависит от состояния поверхности тела. Для абсолютно черного тела, т. е. тела, обладающего способностью поглощать все падающее на него излучение, σ* = 5,67·10-12 вт/см2·°К4. Для серых тел σ* = ε·σ, где ε - коэффициент черноты, изменяющийся в пределах от 0 до 1. Для полированных металлических поверхностей коэффициенты черноты составляют при нормальной температуре от 0,2 до 0,4, а для окисленных и шероховатых поверхностей железа и стали — от 0,6 до 0,95. С повышением температуры коэффициенты ε увеличиваются и при высоких температурах, близких к температуре плавления, достигают значений от 0,9 до 0,95.
При малой разности температур (Тп - Та) соотношение (3.7) можно приближенно написать так:
qs(τ) = σ*{[T2s(τ) +T2a]·[Ts(τ) +Ta]}·[ Ts(τ) –Ta] = α(T)· [ Ts(τ) –Ta] (3.8)
где α (Т) — коэффициент лучистого теплообмена, имеющий ту же размерность, что и коэффициент конвективного теплообмена, и равный
α (Т)= σ*[T2s(τ) +T2a]·[Ts(τ) +Ta]= σ*·ν(T) (3.9)
Соотношение (3.9) является выражением закона Ньютона охлаждения или нагревания тела, при этом Tа обозначает температуру поверхности тела, воспринимающего тепло. Если температура Тs(τ) изменяется незначительно, то коэффициент α (Т) приближенно можно принять постоянным.
Если температура окружающей среды (воздуха) Тс и температура тепловоспринимающего тела Та одинаковы, а коэффициент лучепоглощения среды очень мал, то в соотношении (3.9) вместо Та можно написать Тс. При этом небольшая доля потока тепла, отдаваемого телом путем конвекции, может быть положена равной αк·∆Т, где ак — коэффициент конвективного теплообмена.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода