Эксимерные лазеры

При высоких давлениях, характерных для рассматриваемых лазеров, трехчастичная ассоциация по схеме Ar+ + 2Ar → Ar2+ + Ar протекает достаточно быстро. Затем в процессе диссоциации образуются нейтральные возбужденные диссоциирующие молекулы e - + Ar2+ → Ar2 → Ar** + Ar. Процессы трехчастичной ассоциации, имеющие большую скорость при высоких давлениях, приводят затем к образованию

связанных молекулярных уровней Ar** + 2Ar → Ar2* + Ar. Самые низкие возбужденные состояния молекул не пересекаются отталкивательными кривыми, и поэтому молекулы в таких состояниях не диссоциируют. При высоких давлениях процессы, описанные выше, протекают быстрее радиационного распада, так что эта цепочка процессов позволяет получить высокую плотность инверсии населенностей.

1.1.4 Лазеры на двухатомных галогенах

Между лазерами на гомоядерных молекулах галогенов и лазерами на эксимерных соединениях атома инертного газа и атома галогена имеется значительное сходство. Однако, они относятся к разным типам устройств.

Лазеры на двухатомных галогенах, так же как лазеры на моногалогенидах инертных газов и лазеры на галогенидах ртути, генерируют на переходах между верхним состоянием ионного типа и нижним ковалентным состоянием. Таким образом, и характеристики этих лазеров должны быть аналогичными. Нижние состояния моногалогенидов инертных газов (за исключением XeF) являются отталкивательными, что облегчает получение инверсии населенностей. Однако гомоядерные молекулы галогенов имеют тенденцию к переходам на высокие колебательные уровни связанных нижних электронных состояний. Поэтому в них инверсия определяется быстрой колебательной и электронной релаксацией.

Основные кинетические процессы, протекающие в лазерах на галогенидах, представлены на рисунке 3.

Лазерная накачка электронным пучком или разрядом способна быстро и эффективно создавать первичные состояния во всем объеме газа. В реакциях с передачей энергии от примеси галогену образуются возбужденные атомы галогенов X*. Возможной реакцией, в которой создаются другие первичные состояния, является реакция с одновременным образованием отрицательных ионов X - (за счет диссоциативного прилипания электронов низкой энергии) и галогенсодержащих положительных ионов X+ или RX+. Реакции ион-ионной нейтрализации (процесс 1) могут затем произвести возбужденные состояния гомоядерных галогенов. Возбужденные нейтральные атомы могут образовывать молекулы галогенов путем гарпунных реакций (процесс 2).

Рисунок 3. Схема основных кинетических процессов, связанных с возникновением генерации в двухатомных галогенах

При высоком давлении газа в рабочем объеме быстрая электронная и колебательная релаксация приводит к заселению наинизших уровней ионных термов. Чтобы эти процессы оказались эффективными, молекула не должна иметь отталкивательных потенциальных кривых, соответствующих атомам в основных состояниях и пересекающих потенциальные кривые связанных верхних состояний. Дезактивация верхних уровней происходит за счет излучения (процесс 4) и тушения (процесс 5), первый из которых является желательным, а второй - нежелательным процессом. Из спектроскопических измерений следует, что излучательные процессы заканчиваются на высоких колебательных уровнях нижней потенциальной кривой, которая не представляет собой основное состояние. Последующие столкновения в газе способствуют быстрой колебательной релаксации или даже диссоциации нижнего уровня, поддерживая таким образом инверсию населенностей. К заселению верхнего лазерного уровня могут приводить несколько различных процессов. Нижний уровень не обязательно является самым низким энергетическим состоянием молекулы.

На рисунке 4 приведены спектры испускания галогенов.

Рисунок 4. Спектры испускания галогенов

В случае йода спектр был снят за 1, 3 и 5 импульсов, а в случае брома - за 1, 5 и 10 импульсов. Длинноволновая часть импульсов характеризуется большим количеством подавленных импульсов.

1.1.5 Лазеры на парах металлов

Эксимерные молекулы с атомами металлов характеризуются несколькими важными свойствами. Во-первых, их эксимерные полосы располагаются на крыльях линий паров металлов; следовательно, наиболее интересные полосы, соответствующие переходам из основного состояния в первое возбужденное, обычно находятся в видимой или ближних УФ и ИК областях спектра. Во-вторых, многие из возбужденных состояний AB*, определяющие эти полосы, являются слабосвязанными. Для того, чтобы иметь соответствующее давление паров металлов, требуемое для получения достаточного коэффициента усиления, необходимы повышенные температуры (за исключением случая Hg). При этом возникает сложная техническая проблема, связанная с химическим взаимодействием с материалами окон и прокладок. И, наконец, энергия атомов металлов в наинизшем возбужденном состоянии, как правило, составляет менее половины энергии ионизации. Это свойство имеет важные следствия для электронных столкновительных сечений, которыми определяется КПД потенциальных электроионизационных и электроразрядных лазеров высокой мощности.

Наличие слабой связи у многих эксимеров с участием атомов металлов сильно отражается на их оптических свойствах, когда они используются как лазерная среда. Это приводит к низкому показателю усиления в расчете на возбужденный атом металла; однородному уширению эксимерной полосы; быстрым переходам между возбужденными атомами A* и соответствующими эксимерными молекулами AB*; а также к необходимости повышать плотность инертного газа и к довольно строгим требованиям, накладываемым на степень возбуждения атомов металлов. Также наличие слабой связи позволяет получать (благодаря низкому показателю усиления и однородному уширению) высокие уровни мощности, а также большие энергии в импульсе, чему способствует отвод тепла инертным газом, находящимся при высоком давлении.

1.1.6 Охлаждение, вентиляция и очистка рабочего газа

В эксимерных лазерах, работающих при, примерно, 2% -ном соотношении входной электрической и выходной оптической энергий, избыток энергии должен эффективно выводиться как избыток тепла. Как во всех охлаждающих системах газовых лазеров, плохой теплообмен между рабочим газом и теплообменником становится причиной появления проблем. Обычно активная среда содержится в алюминиевом резервуаре определенного объема под давлением. Встроенный вентилятор создает мощную циркуляцию рабочего газа, что позволяет сохранять активную среду хорошо перемешанной и обновляемой в области генерации и получать высокую скорость прохождения газа через фильтр и теплообменник. Последний, обычно использующий в качестве охлаждающей среды воду, для обеспечения высокой температурной стабильности (особенно в режиме частых повторений) должен иметь определенную зону контакта со средой. На рисунке 5 схематично представлен резонатор эксимерного лазера.

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы