Страница
1

Расчет принципиальной тепловой схемы паротурбинной установки типа Т-100-130

Аннотация

Рис. 20, табл. 35, стр. 146, плакатов 5, библиогр. 11.

В выпускной квалификационной работе проведён поверочный расчёт тепловой схемы электростанции на базе теплофикационной турбины.

Т – 100 – 130, работающей на расчётном режиме при наружной температуре воздуха , а также при температуре 9 src="images/referats/9165/image002.png">и на номинальном режиме при . Расчёт на номинальном режиме выполнен по двум методам: при принятом значении DО и NЭ; расчёт на двух других режимах выполнен по NЭ.

В результате расчёта определены:

- расход пара в отборах турбины;

- расход греющего пара в сетевые подогреватели, в регенеративные подогреватели высокого и низкого давления, а также в деаэратор 6 ата;

- расход конденсата в охладителях эжекторов, уплотнений, смесителях;

- электрическая мощность турбоагрегата (расчёт по принятому DО);

- расход пара на турбоустановку (расчёт по принятой NЭ);

- энергетические показатели турбоустановки и ТЭЦ в целом:

1) тепловая нагрузка парогенераторной установки;

2) коэффициент полезного действия ТЭЦ по производству электроэнергии;

3) коэффициент полезного действия ТЭЦ по производству и отпуску теплоты на отопление;

4) удельный расход условного топлива на производство электроэнергии;

5) удельный расход условного топлива на производство и отпуск тепловой энергии.

Проведён поверочный расчёт конденсационной установки КГ2-6200-2.

Задание

Рис. 1 – Принципиальная тепловая схема ТЭЦ с турбоустановкой Т-100-130

Введение

Современные паровые и газовые турбины являются основным двигателем тепловых и атомных электростанций, значение которых для энергетики определяется все возрастающими потребностями страны в электроэнергии. Паровые турбины позволяют осуществлять совместную выработку электрической энергии и теплоты, что повышает степень полезного использования теплоты органического и ядерного топлива. Газотурбинные и парогазовые установки обеспечивают высокую маневренность электростанций для покрытия пиковой части суточного графика электрической нагрузки в энергосистеме и высокий КПД (ПГУ).

Таким образом, паровая турбина является основным типом двигателя на современной тепловой электростанции, в том числе на атомной. Паровая турбина получила также широкое распространение в качестве двигателя для кораблей военного игражданского флота. Паровые турбины используются, кроме того, для привода различных машин — насосов и др.

Паровая турбина, обладая большой быстроходностью, отличается сравнительно малымиразмерами и массой и может быть построена на очень большую мощность (миллион киловатт и более), вместе с тем паровая турбина достигает высокой экономичности и имеет высокий К.П.Д.

Современные паротурбинные ТЭЦ различают по следующим признакам:

1) по назначению (видам покрываемых нагрузок) — районные (коммунальные, промышленно-коммунальные), снабжающие теплом и электроэнергией потребителей всего района, и промышленные (заводские);

2) по начальным параметрам пара перед турбиной — низкого (до 4 МПа), среднего (4—6 МПа), высокого (9—13 МПа) и сверхкритического (24 МПа) давления.

Основными типами турбин на паротурбинных ТЭЦ являются:

· теплофикационные (тип Т), выполняемые с конденсатором и регулируемыми отборами пара дли покрытия жилищно-коммунальных нагрузок;

· промышленно-теплофикационные (тип ПТ), выполняемые с конденсатором и регулируемыми отборами пара для покрытия промышленных и жилищно-коммунальных нагрузок;

· противодавленческие (тип Р), не имеющие конденсатора; весь отработавший пар после турбины направляется потребителям тепла.

Турбины типа Т и ПТ являются универсальными, так как за счет перепуска части или всего количества пара в конденсатор могут вырабатывать электрическую энергию независимо от тепловой нагрузки отборов. Турбины типа Р вырабатывают электроэнергию только комбинированным методом, поэтому они используются для покрытия постоянных тепловых нагрузок, как правило, технологических нагрузок промышленных предприятий.

Для организации рационального энергоснабжения страны особенно большое значение имеет теплофикация, являющаяся наиболее совершенным технологическим способом производства электрической и тепловой энергии и одним из основных путей снижения расхода топлива на выработку указанных видов энергии. В комбинированной выработке заключается основное отличие теплофикации от так называемого раздельного метода энергоснабжения, при котором электрическая энергия вырабатывается на конденсационных тепловых электростанциях (КЭС), а тепловая – в котельных.

Ориентация российской энергетики на комбинированное производство электрической энергии и теплоты на крупных ТЭС была предусмотрена еще в государственном плане электрификации России – плане ГОЭЛРО. Эта идея, полностью оправдавшая себя опытом развития советской теплофикации, широко реализуется в городах и промышленных районах нашей страны.

Отечественная теплофикация базируется на районных ТЭЦ общего пользования и на промышленных ТЭЦ в составе предприятий, от которых теплота отпускается как промышленным предприятиям, так и расположенным поблизости городам и населенным пунктам. Для удовлетворения отопительно-вентиляционной и бытовой нагрузок жилых и общественных зданий, а также промышленных предприятий используется главным образом горячая вода. Применение горячей воды в качестве теплоносителя позволяет использовать для теплоснабжения теплоту отработавшего пара низкого давления, что повышает эффективность теплофикации благодаря увеличению удельной выработки электрической энергии на базе теплового потребления.

1. Описание принципиальной тепловой схемы теплоцентрали на базе турбоустановки типа Т-100-130

Принципиальная тепловая схема турбоустановки – это структурная схема оборудования пароводяного тракта, характеризующая процессы преобразования и использования теплоты. Принципиальные схемы турбоустановок включают структурную схему турбины, схемы конденсационного устройства (в части тракта рабочего тела), регенеративного подогрева воды, включения теплофикационной установки и некоторые другие.

Трубопроводы на принципиальной схеме указывают одной линией независимо от числа параллельных потоков; параллельно включённое однотипное оборудование также изображают только один раз; при этом полностью отражают последовательно включённые элементы. Арматуру, входящую в состав трубопроводов или установленную на самих агрегатах, на таких схемах не указывают, за исключением важнейшей.

Принципиальная тепловая схема станции с турбиной Т-100-130 приведена в приложении А. Турбина имеет семь отборов, из которых два последних – теплофикационные. Система регенеративного подогрева состоит из трёх ПВД, деаэратора (присоединенного к третьему отбору турбины по предвключённой схеме) и четырёх ПНД. Кроме того, как и обычно, в системе имеются подогреватели, работающие на паре уплотнений ПУ1 и ПУ2 и паре ПЭ. Все ПВД имеют встроенные ОП и ОД. Подогреватель низкого давления П3 имеет вынесенный ОД.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы