Растекание тока в земле при замыкании

В качестве регуляторов используют беспоисковые, изготовленные, как правило, кустарным способом устройства, основанные на принципе фазовой автоподстройки частоты контура нулевой последовательности и рабочего напряжения сети. Регуляторы не имеют системы контроля выхода объекта регулирования в область резонанса и не имеют обратной связи по степени настройки катушки. Если учесть, что точность настр

ойки в значительной мере зависит от суммарной емкости всей сети, длительных и случайных изменений состояния изоляции электрооборудования, большого количества возможных параметрических возмущающих факторов и т.д., которые требуют периодического вмешательства обслуживающего персонала в систему регулирования, то становится очевидным, что в условиях эксплуатации контроль степени настройки катушки значительно затруднен, а высокая точность настройки мало вероятна.

Предлагается также повышение надежности работы сетей собственных нужд 6 кВ электростанций за счет перевода всех возникающих в системе собственных нужд однофазных замыканий на землю в глухие замыкания. Для этой цели следует подключить между сборными шинами 6 кВ и землей три однополюсных выключателя с индивидуальным приводом и управлением (рис. 2).

При возникновении любого вида однофазного замыкания на землю с помощью устройства выбора поврежденной фазы (УВПФ) происходит автоматическое включение соответствующего шунтирующего однофазного выключателя (КМ1-КМ3), соединенного с землей, и тем самым шунтирующего поврежденную фазу. Устройство выбора поврежденной фазы срабатывает с выдержкой времени порядка 0,5 с, отстроенной от времени действия защит на отходящих присоединениях. Пусковой орган УВПФ срабатывает при условии возникновения на трансформаторе TV напряжения 3Uо, превышающего заданную уставку, и при снижении одного из фазных напряжений до заданного уровня подает команду на включение соответствующего шунтирующего выключателя (КМ1-КМ3).

Рисунок 2 – Принципиальная схема ограничения перенапряжений и перевода дуговых замыканий в глухие

Ограничение перенапряжений в системе собственных нужд осуществляется за счет подключения к сборным шинам нелинейных оксидно-цинковых активных сопротивлений типа ОПН-КС-6/47. Последние обеспечивают глубокое ограничение перенапряжений до уровня 2Uф. Однако их недостатком является низкая термическая стойкость, так как допустимое время работы составляет порядка 2 с в режиме однофазного замыкания на землю в сети 6 кВ. В связи с этим предложено в цепи нейтрали фазных ОПН, соединенных в звезду (рис. 1), подключить однополюсный выключатель, через который происходит соединение нейтрали ОПН с землей. При этом между шунтирующими выключателями КМ1-КМ3 и выключателем нейтрали ОПН КМ0 выполняется блокировка, которая при включении любого из шунтирующих выключателей автоматически отключает выключатель нейтрали КМ0 и переводит два последовательно соединенных ОПН на подключение к линейному напряжению, чем ограничивается их время работы при однофазном замыкании на землю.

Подавление перенапряжений в сети с момента начала горения дуги до момента шунтирования поврежденной фазы однополюсным контактором (КМ1-КМ3) успешно можно осуществлять ограничителями перенапряжений типа ОПН, включенными по предлагаемой схеме (рис. 1) для осуществления термостабильности. Это позволяет отказаться от установки в сети дополнительного оборудования (присоединительного трансформатора и бэтеловых резисторов) и, кроме того, реализация такого технического решения ограничивает длительность существования дуговых замыканий и сопутствующих им перенапряжений временем порядка 0,5 с до момента включения шунтирующего контактора.

В условиях отсутствия в настоящее время надежных средств защиты сетей 6кВ собственных нужд электростанций от последствий однофазных замыканий на землю, ведется поиск эффективного решения проблемы повышения надежности работы электрооборудования, заключающегося в оптимизации и управлении режимом нейтрали сети для обеспечения максимального ограничения амплитуды и длительности всех возможных в эксплуатации повышений напряжения и снижения тепловых потерь в месте пробоя изоляции. Для решения поставленной задачи наиболее рациональным является использование математической модели, которая позволяет оценить возможный уровень перенапряжений в сети с учетом ее реальных параметров, а также эффективность применения того или иного технического решения.

Особенностью модели является возможность анализа однофазных глухих и дуговых замыканий на землю не только вблизи сборных шин, но и в индуктивных обмотках двигателей, трансформаторов, а также замыканий при наличии смещения нейтрали, вызванного несимметрией нагрузки. На рис. 3 приведена схема замещения сети собственных нужд электростанции и стрелками показаны пути протекания токов в нормальном режиме. Рассматриваемая сеть представлена сосредоточенными параметрами: фазными и междуфазными емкостями и активными сопротивлениями, взаимоиндукцией между фазами. Источник питания и специальный присоединительный трансформатор включены в схему соответствующими фазными индуктивностями рассеяния и активными сопротивлениями. Высоковольтные двигатели введены в схему замещения фазными сверхпереходными индуктивностями рассеяния и активными сопротивлениями. В нейтраль присоединительного трансформатора включены токоограничивающий резистор и реактор. Цепь замыкания фазы на землю в обмотке двигателя имитируется емкостью и активным сопротивлением дуги. Схема описывается системой дифференциальных уравнений относительно неизвестных контурных токов и напряжений в узлах. В операторной форме эта система имеет вид:

где р – оператор дифференцирования

К этим уравнениям необходимо добавить также дифференциальные уравнения, записанные для напряжений на емкостях. Эти уравнения имеют вид:

Рисунок 3 – Схема замещения сети собственных нужд электростанции

Анализ подобных режимов с помощью описанной модели позволит оценить работоспособность различных видов защит от замыканий на землю, выбрать такой режим работы нейтрали, при котором перенапряжения будут минимальными, а также определить предельную длительность существования дугового замыкания из условия термической стойкости разрядников типа ОПН.

В случае резистивного заземления нейтрали эта математическая модель позволяет не только оценить ожидаемую кратность перенапряжений, но и, исходя из поставленных условий, выбрать значение номинала заземляющего резистора, что в свою очередь является весьма непростой задачей.

Низкоомное резистивное заземление нейтрали призвано создать ток при однофазном замыкании в десятки и даже сотни ампер и, естественно, сочетается с устройством релейной защиты, действующей на немедленное отключение поврежденного присоединения. Величина тока в месте замыкания выбирается исходя из требуемой чувствительности работы устройств релейной защиты. Проведенные исследования показывают, что такой режим заземления нейтрали обоспечивает достаточно глубокое (до 2,2–2,4 Uф) ограничение перенапряжений и сокращает до минимума время их воздействия.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы