Фискальная политика государства

Следует отметить, что аналитический метод оценки эффективности фискальной политики позволяет использовать функциональные зависимости с числом параметров, не превышающим трех. Большее число параметров требует добавления к базовой системе (4), (6), (7) дополнительных уравнений, что невозможно из-за узкой постановки исходной задачи.

2. Двухпараметрический метод. В основе данного метода лежит а

ппроксимация процесса экономического роста усеченной квадратичной функцией, включающей только два параметра:

. (14)

Тогда сумма фискальных поступлений равна

. (15)

Дополнительное ограничение, накладываемое на функциональные свойства производственной системы, задается уравнением, аналогичным (6):

. (16)

Построенная система уравнений (14), (16) достаточна для отыскания параметров b и g . Как и в случае использования трехпараметрического метода, уравнение (14) воспроизводит “точечные” свойства производственной системы, а уравнение (16) – “интервальные”. При этом вспомогательное уравнение, задающее динамические свойства фискальной системы, отсутствует; по умолчании считается, что получаемая сумма налогов полностью детерминируется активностью производственной системы и уровнем фискального давления.

Формулы для оценки параметров на основе решения (14), (16) имеют вид

, (17)

. (18)

Точки Лаффера первого и второго рода определяются из (14) и (15) по соответствующим формулам:

, (19)

. (20)

Анализ условий второго порядка показывает следующее: для того, чтобы стационарные точки (19) и (20) были действительно точками Лаффера, необходимо и достаточно выполнение двух неравенств: b >0 и g <0.

§2.4. Сравнительный анализ методов оценки эффективности фискальной политики.

В рамках класса алгебраических методов возможны два подхода к расчету эффективности фискальной системы с помощью точек Лаффера. Проанализируем особенности каждого из них с тем, чтобы выбрать наиболее приемлемый для дальнейших прикладных расчетов.

Как указывалось, порядок полиномиальной регрессии не должен быть слишком высоким, так как по мере его роста утрачивается смысл эконометрической процедуры сглаживания. Дело в том, что в предельном случае, когда порядок полинома будет равен t -1, где t - число отчетных ретроспективных точек, количество параметров, подлежащих оценке, также будет равно t.[16] В такой ситуации пользоваться статистическими методами построения регрессии бессмысленно, ибо все параметры могут быть однозначно определены алгебраически с помощью процедуры интерполяции исходного динамического ряда X полиномом. Таким образом, в предельном случае статистические методы переходят в алгебраические, что иллюстрирует их изначальное методическое единство. Однако процедуры интерполяции, вообще говоря, следует избегать по целому ряду причин.[17]

Во-первых, полиномы высокой степени требуют высокой точности расчетов, так как в противном случае накапливаются вычислительные погрешности.

Во-вторых, полиномы выше четвертой степени порождают серьезные алгебраические проблемы при дальнейшем определении стационарных точек. В этом случае задача сводится к решению алгебраического уравнения высокой степени, что само по себе представляет сложную задачу. Однако даже после ее решения в дальнейшем предстоит классифицировать все стационарные точки на локальные минимумы и максимумы, затем среди точек локального максимума выбрать те, которые являются точками Лаффера. В конечном счете, помимо чисто вычислительных проблем придется решать еще проблему интерпретации полученных результатов, что также весьма непросто.

В-третьих, сама процедура интерполирования априори предполагает, что имеется жесткая функциональная связь между объемом выпуска и уровнем налогового бремени. Хотя теоретически связь между этими переменными должна существовать, все же желательно, чтобы ее наличие было строго доказано. Кроме того, полиномиальная интерполяция, будучи технически безупречной, с содержательной точки зрения все же представляется несколько искусственной.

Между тем и построение регрессионной зависимости таит в себе целый ряд минусов.

Во-первых, в России не накоплен информационный массив для формирования динамических рядов, позволяющих строить эффективные регрессионные модели.

Во-вторых, в российской экономике переходного периода отсутствовала какая-либо устойчивость в развитии исследуемого процесса. Так, в одни годы увеличение налогового бремени сопровождалось сокращением ВВП, а в другие – увеличением. Фактически это означает, что некая гипотетическая функциональная связь между ВВП и налоговым бременем постоянно “ломалась” и для каждого короткого периода времени действовала своя производственная функция; попытка отыскать универсальную зависимость для всего периода исследования скорее всего обречена на неудачу. Именно этот факт и предопределяет необходимость использования двух- и трехпараметрического аналитических методов оценки точек Лаффера как наиболее простых и максимально адекватных нынешним экономическим условиям.

Использование параметрических методов базируется на предпосылке о существовании функциональной связи между объемом производства и уровнем налогового бремени. При этом вид этой связи является общим для всех анализируемых годов, меняются в ней лишь параметры. Последние оцениваются “скользящим” способом, т. е. для каждой пары лет отдельно. При этом первый, базовый год фигурирует в качестве основного, а второй – вспомогательного при определении параметров производственной функции первого года. Нам представляется, что такой подход наиболее перспективен и останется таковым в течение, по крайней мере, 5-6 лет, пока не будут накоплены данные о стабилизировавшемся процессе экономического роста.

При сопоставлении двух предложенных алгебраических методов можно сказать следующее. Достоинство трехпараметрического метода, прежде всего, – учет функциональных свойств как производственной (4), так и фискальной (5) функций. Следовательно, оцениваемые параметры одновременно “стягиваются” свойствами производственной и фискальной систем, которые на практике могут сильно различаться; в двухпараметрическом методе мы ограничиваемся свойствами только производственной кривой (14), что означает безусловное упрощение моделируемого процесса и ведет к огрублению получаемых оценок. Кроме того, сам вид исходной квадратичной производственной функции (4) является более общим по сравнению с формулой (14) и тем самым генерирует более богатую аналитическую схему. В этом смысле трехпараметрический метод более предпочтителен. Вместе с тем вычислительная простота, наглядность и элегантность конечных результатов двухпараметрической схемы расчета предопределяют выбор ее в качестве рабочей методики. Нам представляется, что для уяснения макроэкономической ситуации следует пользоваться предельно простыми алгоритмами, не ведущими к двусмысленным интерпретациям.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Финансы, деньги и налоги»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы