Полимераналогичные превращения бутадиен-стирольных каучуков

Химические свойства бутадиен-стирольных каучуков обусловлены наличием в их составе двойной связи и бензольного кольца.

Рассмотрим возможные реакции, протекающие по ароматическому кольцу:

1. Алкилирование по Фриделю-Крафтсу:

e=12>

В качестве алкилирующих агентов пригодны также спирты и их эфиры с неорганическими и органическими или органическими кислотами. Наряду с хлоридом алюминия катализаторами могут служить и другие кислоты Льюиса, такие как хлорид цинка, хлорид железа (III), хлорид олова (IV), фторид бора, а также протонные кислоты (фтористоводородная, серная или фосфорная кислоты).

Часто алкилирование не останавливается на стадии монозамещения. При различных условиях проведения реакции могут быть получены следующие продукты:

2. Галогенирование:

3.

Деструкция при окислении с образованием бензойной кислоты:

Рассмотрим возможные реакции по двойной связи:

1. Каталитическое гидрирование. В присутствии высокоэффективных специальных платиновых и палладиевых катализаторов эта реакция протекает уже при нормальных условиях:

2. Присоединение галогенов:

3. Присоединение галогеноводородов:

4. Гидратация:

5. Эпоксидирование над оксидом серебра:

6.

Было установлено [2-4], что при термомеханической модификации эластомеров в присутствии хлорсодержащих реагентов преимущественно протекают реакции теломеризации, радикального гидрохлорирования и гидрохлорирования непредельных фрагментов эластомера.

Известно [5, 6], что процессы механодеструкции и механоактивации, протекающие при механическом воздействии на эластомер, в своей совокупности обуславливают его термомеханические превращения, приводящие к изменению молекулярной массы (ММ), молекулярно-массового распределения (ММР) и содержания гель-фракции полимера.

Как видно из приведенных данных [2] (рис. 1), молекулярная масса эластомера в зависимости от продолжительности термомеханического воздействия возрастает от 2,25·105 до 3,2·105 (в интервале 0—20 мин). При дальнейшей обработке молекулярная масса постепенно снижается до 1,1·105 (до 60 мин). На кривой изменения содержания гель-фракции наблюдается небольшой максимум при времени обработки 20 мин. Температура обрабатываемого каучука в зависимости от продолжительности обработки возрастает от 25 до 122 °С, причем наиболее интенсивно она увеличивается (до 117 °С) при времени обработки до 20 мин [2].

Из приведенных данных видно, что наиболее интенсивно процессы механодеструкции протекают при продолжительности обработки до 40 мин, поскольку при этом наблюдается резкое снижение молекулярной массы. Дальнейшее незначительное падение ММ объясняется протеканием механически активированной термодеструкции.

Рис. 1. Зависимость температуры (1), средневязкостной молекулярной массы (2) и содержания гель-фракции (3) от продолжительности механической обработки каучука СКС-ЗОРП

Была проведена термомеханохимическая модификация бутадиен-стирольного каучука в присутствии хлорсодержащих реагентов [2].

В качестве химических реагентов модификации (модификаторов) использовали хлорорганические соединения, различающиеся как по содержанию хлора, так и по агрегатному состоянию: модификатор М1 — порошкообразный продукт; температура плавления 70—85 °С, содержание хлора до 70 % (масс). Модификатор М2 — жидкий продукт; содержание хлора до 49 % (масс).

В процессе модификации каучуков измеряли температуру эластомерной фазы непосредственно перед введением модификатора и после окончания процесса модификации. Для модифицированных каучуков определяли общее содержание хлора и содержание связанного хлора. Для определения связанного хлора образцы модифицированных каучуков подвергали экстракции ацетоном в аппарате Сокслета в течение 20 ч. Содержание хлора определяли по методу Шонигера. Реакционную способность функциональных групп эластомера по отношению к хлорсодержащему реагенту определяли по отношению содержания связанного хлора к его общему содержанию.

Было установлено, что реакция дегидрохлорирования модификаторов М1 и М2 в отсутствие механического воздействия начинается при температуре 120 °С.

Данные, полученные в результате термомеханохимической модификации каучука СКС-30РП в присутствии модификаторов М1 и М2, приведены в табл. 2. Видно, что реакционная способность функциональных групп эластомера по отношению к хлорсодержащим модификаторам М1 и М2 неодинакова. Реакционная способность эластомера по отношению к модификатору M1 возрастает от 33,7 % (область I) до 68,3 % (область III), в то время как у каучука, модифицированного М2 этот показатель во всех трех областях модификации имеет одно и то же значение (33,9 %). Температура процесса модификации в областях II и III едва достигает температуры дегидрохлорирования модификаторов (120 °С). Все это указывает на то, что основной реакцией модификации здесь является реакция теломеризации, хотя и не исключается частичное протекание реакций радикального хлорирования и гидрохлорирования. Эти реакции возможны при температурах, близких или превосходящих температуру реакции дегидрохлорирования модификаторов (> 120 °С). Превалирование той или другой реакции зависит от интенсивности протекания процессов деструкции в эластомерной фазе при термомеханохимической обработке. Показатели, характеризующие протекание процессов деструкции в области модификации I в случае применения обоих типов модификаторов, имеют близкие значения. Далее (в областях II и III) в случае применения жидкого модификатора М2 достигнутая глубина деструкции остается неизменной. Были изучены вулканизационные характеристики резиновых смесей и физико-механические свойства резин на основе полученных хлорсодержащих каучуков (табл. 3). Резиновые смеси были изготовлены в лабораторном резиносмесителе по стандартной для бутадиен-стирольного каучука рецептуре.

Страница:  1  2  3 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы