Молекулярная подвижность в ненаполненных и наполненных сшитых кремнийорганических каучуках

При уменьшении количества наполнителя характер температурной зависимости исследуемых параметров изменяется, о чем можно судить по данным, приведенным на рис. 6. Основное отличие состоит в том, что для систем с меньшим количеством наполнителя (20 и 15 вес. ч. аэросила 300 и 20 вес. ч. аэросила 175) отсутствует пик tg б в области 255— 260 К при том количестве сорбированной влаги, при котором для

каучука, содержащего 35 вес. ч. наполнителя, этот пик отчетливо проявляется. Положение остальных пиков также несколько изменяется, что свидетельствует о существенном влиянии на их интенсивность и положение не только абсолютного количества сорбированной воды, но и количества и типа наполнителя.

Аналогичные экспериментальные зависимости наблюдаются при исследовании наполненных аэросилом каучуков СКТВ-1 и СКТВФ (рис. 7).

Суммируя приведенные экспериментальные результаты, можно заключить, что в ненаполненных и наполненных сшитых кремнийорганических каучуках, выдержанных предварительно при 470 К или свежеприготовленных, наблюдаются области характерного изменения tg б и ε', отвечающие стеклованию, кристаллизации и плавлению. При наличии в наполненных сшитых каучуках сорбированной влаги происходят характерные переходы в областях 190-220, 255-275 и 370-410 К.

Из анализа литературных данных следует, что поверхность частиц аэросила окружена слоем молекул воды, связанных с аэросилом либо водородными [9], либо координационными связями [10]. Молекулы воды, связанные непосредственно с частицами аэросила, могут связывать другие молекулы, что обусловливает возможность существования достаточно протяженных сорбированных слоев воды. Так как, согласно работе [11], расстояние между отдельными силанольными группами на поверхности аэросила составляет ~0,6—0,7 нм, можно предположить, что этот слой достаточно плотный. Эти же частицы наполнителя связаны посредством тех или иных сил с макромолекулами каучука, следовательно, можно считать, что в наполненных сшитых каучуках, содержащих сорбированную воду, каждая частица наполнителя окружена смешанным слоем связанных молекул каучука и связанных молекул воды.

Релаксационный максимум в области температур 190—220 К, по-видимому, обусловлен движением диполей воды в этом слое. Возникает вопрос, чем вызвано это движение: размораживанием подвижности собственно сорбированных молекул воды, находящихся в матрице расстеклованного каучука, или размораживанием подвижности макромолекул каучука в сорбированном слое? На выяснении этого мы остановимся ниже.

Рис. 4. Температурные зависимости е' (а) и tg6 (б), полученные после резкого охлаждения образцов СКТ, наполненных 35 вес. ч. аэросила 300: 1 - после хранения в течение 1 года; 2 - после прогревания при 470 К; 3 - концентрация влаги 1,1; 4-1,5 и 5-2,0%

Рис. 5. Зависимости абсолютных значений tg6 от количества сорбированной влаги для образцов СКТ, наполненных 35 вес. ч. аэросила 300, в областях температур 370-390 (1), 255-260 (2) и 190-220 К (3)

Рис. 6. Температурные зависимости tg6, полученные после резкого охлаждения образцов СКТ, наполненных 20 вес. ч. (а) и 15 вес. ч. аэросила 300 (б), а также 20 вес. ч. аэросила 175 (в) после хранения в течение 1 года (2) и после прогревания при 470 К (2). 3 - концентрация влаги 1,4 (а, б) и 0,8% (в)

По мнению некоторых авторов, в частности авторов [12], проводивших исследование методом водородно-дейтериевого обмена, аэросил не содержит внутриглобульной воды, и вся адсорбированная вода находится на поверхности его глобул.

При большом содержании аэросила в каучуке частицы его не могут рассматриваться индивидуально, поскольку они образуют переходящие друг в друга агломераты, пронизывающие всю каучуковую матрицу. Очевидно, что такое рассмотрение подразумевает наличие микрепор или макрополостей, которые также могут проходить по всей матрице. Если при малом содержании аэросила проникновение молекул воды к поверхности его частиц осуществляется по механизму активированной сорбции, то при большом количестве аэросила из-за мелких полостей вода может сорбироваться по механизму неактивированной сорбции. При этом она также сорбируется поверхностью частиц наполнителя, но может агрегироваться и в порах в конденсированном состоянии, разумеется, отличном от состояния обычной воды. Наличие такой воды может обусловливать появление максимума тангенса угла диэлектрических потерь при 255—275 К, что и наблюдается на приведенных температурных зависимостях tg б каучука СКТ, содержащего 35 вес. ч. аэросила 300.

Рис. 7. Температурные зависимости tg б, полученные после резкого охлаждения образцов СКТВ-1, наполненных 15 вес. ч. аэросила 300 (а) и СКТВФ, наполненных 35 вес. ч. аэросила 300 (б) после хранения в течение 1 года (1) после прогревания при 470 К (2). 3 — концентрация влаги 1,0 (а) и 1,2% (б)

Высокотемпературный максимум мы объясняем десорбцией воды, т. е. разрывом различных сорбционных связей, что сопровождается подвижностью диполей. Максимум высокотемпературного пика находится в области 370—410 К, несмотря на это он весьма широкий и лежит в интервале от 280 до 470 К. Это наводит на мысль о том, что этот максимум суммарно описывает мультиплетные максимумы, отражающие разрывы различных по прочности связей, соединяющих молекул воды как с наполнителем, так и друг с другом. Иногда мультиплетность наблюдается в виде отдельных максимумов.

Эксперименты, проведенные методом термогравиметрии, свидетельствуют о том, что десорбция влаги, определяемая по потерям в весе образца, выдержанного в парах воды, начинается от комнатной температуры2. Разумеется, следует иметь в виду, что в рассматриваемом интервале температур возможна десорбция наименее связанной воды, ибо все другие виды адсорбированной воды уходят при температурах, существенно превышающих 470 К [13]. Однако, как нами показано, эти виды воды не отражаются па характере температурных зависимостей tg б и г'.

С целью выяснения поставленного выше вопроса о природе максимума tg δ в области 190—220 К было проведено исследование динамических механических свойств. На рис. 8 в качестве примера приведены температурные зависимости логарифмического декремента затухания А и лога рифма действительной части комплексного модуля сдвига G' ненаполнен-ного и наполненного каучука СКТВ-1.

Рис. 8. Температурные зависимости логарифмического декремента затухания Д (а) и логарифма действительной части комплексного модуля сдвига G (б) образцов СКТВ-1 (резкое охлаждение) (1), СКТВ-1, наполненных 15 вес. ч. аэросила 300 (резкое охлаждение) (2) и СКТВ-1, наполненных 15 вес. ч. аэросила 300 и выдержанного при 190 К (3)

Страница:  1  2  3 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы