Химия и обмен углеводов
Суммарная реакция синтеза молекулы глюкозы:
2 ПВК + 4 АТФ + 2 ГТФ + 2НАДН + 2H+ + 6H2O → Глюкоза + 2НАД+ + 4АДФ+ 2 ГДФ + 6 Фн +6H+
Таким образом, синтез одной молекулы глюкозы “обходится” клетке затратой шести макроэргов. 2 молекулы АТФ расходуются для активирования СО2, 2 молекулы ГТФ используются в фосфоенолпируваткарбоксикиназной реакции и 2 молекулы АТФ – для образования 1,3-д
ифосфоглицериновой кислоты.
Глюконеогенез активируется в клетках печени во время голодания, после продолжительных физических упражнений, при употреблении пищи, богатой белками при низком содержании в ней углеводов и т.д.
Интенсивность процесса зависит от количества субстратов, и активности, и количества ключевых ферментов гликолиза и глюконеогенеза.
Основными поставщиками субстратов для печени являются мышцы, эритроциты, жировая ткань. У последней довольно ограниченные возможности, поскольку только глицерол может использоваться для синтеза глюкозы, а это только около 6% от веса капельки жира.
Лактат, образующийся в результате работы мышц в анаэробных условиях или поступающий из эритроцитов, более значимый источник глюкозы. Наиболее важными источниками являются гликогенные аминокислоты, которые могут поступать с пищей, богатой белками или из мышц в условиях голодания.
Чтобы непрерывно снабжать глюкозой клетки, для которых она является основным источником энергии, но они не могут окислить ее полностью в силу отсутствия митохондрий (эритроциты) или из-за работы в анаэробных условиях, между печенью и этими клетками устанавливаются циклические процессы по обмену субстратами. Один из таких – цикл Кори: образующаяся в мышцах (эритроцитах) молочная кислота поступает в общий кровоток, захватывается печенью и используется ею в качестве субстрата глюконеогенеза; синтезируемая при этом глюкоза отдается в кровототок и метаболизируется мышцами или эритроцитами для получения энергии.
В отличие от цикла Кори, аланиновый цикл протекает при условии потребления периферическими тканями кислорода и требует митохондрий. При употреблении пищи богатой белами или при голодании происходит довольно активный обмен между печенью и мышцами аланином и глюкозой. Аланин из мышц передается клеткам печени, где он переаминируется и ПВК используется для синтеза глюкозы. По мере необходимости глюкоза поступает в мышцы и окисляется до ПВК, а затем, путем переаминирования, превращается в аланин который может вновь повторить этот цикл. Энергетически это более выгодный путь, чем цикл Кори.
NB! Гликолиз и глюконеогенез – взаимосвязанные процессы
Условия, благоприятствующие глюконеогенезу, сопровождаются рядом изменений, оказывающих регулирующее влияние на ключевые ферменты гликолиза и глюконеогенеза. Эти изменения выражаются в следующем:
· увеличивается секреция глюкагона и снижается секреция инсулина поджелудочной железой, что способствует повышению содержания цАМФ в гепатоцитах;
· увеличивается секреция глюкокортикоидов и адреналина надпочечниками;
· усиливается мобилизация липидов из жировых депо, что способствует повышению уровня ацетил-КоА в клетках печени (усиливаются процессы b-окисления жирных кислот);
· повышается выход аминокислот из мышечной ткани (аланин и другие гликогенные аминокислоты).
Перечисленные изменения могут оказывать влияние на активность ферментов глюконеогенеза и гликолиза, а также менять их количество в клетках печени.
В начале параграфа уже было показано, что активность одного из ферментов гликолиза (пируваткиназы) ингибируется в условиях, благоприятствующих глюконеогенезу. Второй фермент, активно использующий ПВК в аэробных условиях – пируватдегидрогеназа, также ингибируется. Этому способствует повышение уровня ацетил-КоА – аллостерического ингибитора пируватдегидрогеназы и ее фосфорилирование протеинкиназаой А, которая активируется условиях благоприятстующих глюконеогенезу(повышение уровня цАМФ). Напротив, ацетил-КоА является аллостерическим активатором пируваткарбоксилазы, и повышение количества ПВК в еще большей степени способствует усилению работы этого фермента – одного из ключевых ферментов глюконеогенеза.
Пируваткарбоксилаза катализирует образование оксалоацетата, который затем декарбоксилируется и фосфорилируется под действием фосфоенолпируваткарбоксикиназы с образованием фосфоенолпирувата. Повышение уровня цАМФ в гепатоцитах вызывает путем активирования факторов транскрипции протеинкиназами усиление синтеза фосфоенолпируваткарбоксикиназы. Неактивное состояние пируваткиназы (см.выше) – условие предупреждения возможного холостого субстратного цикла на этом этапе глюконеогенеза.
Второй субстратный цикл на пути глюконеогенеза может возникнуть на этапе превращения фруктозо-1,6-дифосфата во фруктозо-6-фосфат. Благодаря особой роли фруктозо-2,6-дифосфата этого удается избежать. Фруктозо-2,6-дифосфат – аллостерический активатор фосфофруктокиназы -1 –ключевого фермента гликолиза, синтезируется бифункциональным ферментом - фосфофруктокиназой-2 (ФФК-2). Один домен этого фермента проявляет 2-киназную активность, а другой – 2-фосфатазную. Протеинкиназа А, фосфорилируя ФФК-2, активирует ее фосфатазную активность, что ведет к распаду фруктозо-2,6-дифосфата с образованием фруктозо-6-фосфата. Снижение фруктозо-2,6-дифосфата вызывает торможение гликолитического направления в использовании фруктозо-1,6-дифосфата и усиливает глюконеогенез. Фруктозо-1,6-дифосфатаза относится к индуцируемым ферментам и при повышении цАМФ происходит усиление транскрипции ее генов.
Активности гексокиназы и глюкозо-6-фосфатазы регулируются уровнем глюкозо-6-фосфата: гексокиназа им ингибируется, а фермент глюконеогенеза (т.е.глюкозо-6-фосфатаза) активируется.
NB! В аэробных условиях ПВК окончательно окисляется
Цепь реакций аэробного распада глюкозы можно разделить на три основных этапа.
1. Дихотомический распад глюкозы до стадии ПВК, полностью совпадающий с реакциями гликолиза.
2. Окислительное декарбоксилирование ПВК, завершающееся образованием ацетил-КоА.
3. Цикл Кребса, в котором ацетил-КоА расходуется на образование СО2 и субстратов тканевого дыхания, используемых дыхательной цепью митохондрий.
Подчеркнем, что, в отличие от первого этапа, остальные два требуют аэробных условий и протекают в митохондриях.
Окислительное декарбоксилирование пирувата
Пируват, образовавшийся в реакциях гликолиза (в цитоплазме), должен быть транспортирован в митохондрии. Транспорт осуществляется специальной «челночной» системой. В матриксе митохондрии, прикрепившись к ее внутренней мембране, находится сложный полиферментный комплекс – пируватдегидрогеназа.
Пируватдегидрогеназа состоит из 60 полипептидных цепей, которые можно разделить на 3 основных фермента: Е1 – собственно пируватдегидрогеназа (состоит из 24 субъединиц); Е2 – дигидролипоилтрансацетилаза (также 24 субъединицы); Е3 – дигидролипоилдегидрогеназа (12 субъединиц).
Е1 катализирует декарбоксилирование ПВК с участием кофермента тиаминпирофосфата (ТПФ). Образовавшийся продукт реакции (гидроксиэтильное производное ТПФ) при участии Е2 реагирует с окисленной липоевой кислотой(ЛК). Липоевая кислота – низкомолекулярное азотсодержащее соединение – является коферментом Е2.
Другие рефераты на тему «Химия»:
- Исследование механизма синергического действия смесей цинковых солей органических кислот и полиолов при термическом распаде поливинилхлорида (ПВХ)
- Расчет конденсатора-холодильника паров бинарной смеси метанол-вода
- Алкалоиды маклейи
- Полиэфируретаны на основе 1,5-нафтилендиизоциаиата, структура и термическое поведение
- Основные принципы подбора условий разделения