Теоретические основы химической технологии
Применение атомной энергии позволит поручить недостижимые ранее температуры в сотни тысяч градусов и прежде всего низкотемпературную плазму (1000-10000 К).
Использование плазмохимических процессов дает возможность осуществить эндотермические превращения, равновесие которых сильно смещено в сторону заданных целевых продуктов лишь при очень высокой температуре (103—104 К). К таким процессам о
тносятся: прямой синтез NO; получение ацетилена из метана и бензина; прямой синтез дициана; получение цианистого водорода из азота и углеводородов; синтезы разнообразных соединений фтора и т. п.
Лазерная техника позволит синтезировать твердые тела с тонко направленной кристаллической структурой и заданными свойствами, в том числе катализаторы, полупроводники, молекулярные сита, адсорбенты и т. п.
Фотохимические реакции, вызываемые или ускоряемые действием световой энергии, происходят как в природе, так и в промышленности. Хлорирование и бромирование углеводородов, синтез полистирола, сульфохлорирование парафинов, а также фотосинтез полистирола, сульфохлорирование парафинов, а также фотосинтез с помощью хлорофилла относятся к разряду таких процессов.
Радиационно-химические реакции, происходящие при воздействии ионизирующих излучений высокой энергии, позволят интенсифицировать химико-технологический процесс, проводить синтез органических соединений, осуществляемых пока только в природе (различные белковые препараты, ферментативные вещества и др.), или существенно улучшить структуру промышленных материалов (например, шип, пластических масс, биополимерных структур и т. п.).
Биохимическая технология занимает особое место, поскольку живая клетка обладает высокоактивными, топкоселективными биологическими катализаторами, по своей эффективности при низких (нормальных природных) температурах, несравненно превышающими катализаторы, используемые в химических производствах. Биологическими катализаторами являются синтезируемые в организмах ферменты (или энзимы) и гормоны, а также поступающие в клетки извне витамины.
В настоящее время из биологических процессов промышленность использует в производстве лишь различные формы брожения с получением спиртов, ацетона, органических кислот, биологический синтез белковых кормовых дрожжей, биологическую очистку сточных вод, бактериальное кучное выщелачивание забалансовых руд ряда цветных металлов и т. п. Все эти процессы идут с участием различных микроорганизмов и, как правило, с низкой скоростью и потому не являются в достаточной степени эффективными. Однако умелое производственное применение катализа, осуществляемого в живой природе, позволило бы перестроить по-новому целые отрасли химической промышленности и расширить пищевые ресурсы. В перспективе использования биохимических процессов находятся проблемы фиксации атмосферного азота, синтеза белков и жиров, использование диоксида углерода для органического синтеза. Рациональное осуществление этих процессов позволило бы решить важнейшую проблему жизнеобеспечения человечества путем получения высококалорийных продуктов питания, создания кормовой базы на промышленной основе, получения соответствующих высокоэффективных лекарственных препаратов и средств борьбы с вредителями сельского хозяйства.
ПРОБЛЕМЫ ЖИЗНЕОБЕСПЕЧЕНИЯ И ХИМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ
Бурное развитие промышленного производства и рост народонаселения в значительной степени меняют характер взаимодействия человека с окружающей средой. В основе жизни лежит круговорот элементов, который для человека выражается в обмене веществ с природой. Земля, вода, воздух загрязняются промышленными и бытовыми отходами, сокращаются леса и запасы пригодных для сельского хозяйства земель, исчезают многие виды животных и растений. Под воздействием человека среда изменяется настолько быстро, что веками складывавшиеся в природе равновесия не успевают восстанавливаться, и она неконтролируемо начинает откликаться на эти воздействия. В результате всего этого серьезно ужесточаются условия жизни людей. Жизнеобеспечение человечества, т. е. удовлетворение запросов населения в пище, пресной воде, достаточно чистом для дыхания воздухе и в различных видах энергии, все в большей степени решается методами химической технологии. Обеспечение населения пищевыми продуктами осуществляется по двум основным направлениям; применением продуктов химической промышленности для увеличения продуктивности сельского хозяйства и производством искусственной и синтетической пищи.
Увеличение продуктивности сельскохозяйственного производства становится возможным при соответствующем развитии промышленности высокоэффективных минеральных удобрений, средств борьбы с вредителями сельского хозяйства и создании производства стимуляторов роста растений.
Минеральные удобрения должны быть по возможности безбалластными; иметь широкий спектр действия, т. е. содержать важнейшие питательные вещества, в том числе и микроэлементы; иметь хорошую структуру, что облегчает их хранение и использование; должны легко усваиваться растениями; а также улучшать структуру почв, в которую они вносятся.
Средства защиты растений - пестициды - должны обладать высокой избирательностью действия; достаточно быстро разрушаться; быть неядовитыми для всех животных и птиц. Как правило, все пестициды - органические соединения, и успехи в их синтезе и производстве целиком определяются развитием органической "химии и промышленностью органического синтеза.
Регуляторы роста растений - физиологически активные /по отношению к растениям вещества, которые способны вызывать те или иные изменения в росте и развитии растений. Некоторые гербициды— средства борьбы с сорняками, будучи взятыми в) незначительном количестве, способы ускорять рост растений. Наиболее активные стимуляторы роста растений – гиббереллины - выделяются микробиологическим путем из продуктов жизнедеятельности некоторых грибов и высших растений. Другие регуляторы - десиканты и дефолианты, используемые соответственно для обезвоживания (подсушивания) растений и удаления листьев перед уборкой урожая, — также являются продуктами органического синтеза.
Стимуляторы роста животных - это, как правило, вещества, которые подавляют развитие инфекционных заболеваний у животных. Одновременно улучшается усвоение кормов, что позволяет снизить рацион животных. В настоящее время химическая промышленность приступает к освоению новых биостимуляторов, повышающих плодовитость домашних животных, рыб, насекомых (например, тутового шелкопряда).
Получение искусственной пищи представляет собой важное направление развития химической технологии.
Ограниченность площади земель, пригодных для сельского хозяйства, и небеспредельность интенсификации сельскохозяйственного производства придают проблеме получения искусственной пищи все большее значение. В первую очередь это касается синтеза различных белковых материалов. В настоящее время в промышленных масштабах синтез белков осуществляется в основном микробиологическим путем.
Микробиологическим называется синтез, осуществляемый ферментными системами микроорганизмов. Уже сейчас началось промышленное освоение микробиологического синтеза белков из легких масел, нормальных парафинов, метанола, этанола, уксусной кислоты и других органических соединений, получаемых преимущественно из нефти. Используя для микробиологического синтеза всего 5% нынешней мировой добычи нефти, можно обеспечить белковый рацион 5 млрд. человек, т. е. все население земного шара.
Другие рефераты на тему «Химия»:
- Каталитический риформинг
- Активные угли и их промышленное применение
- 136 Валидационная оценка методики анализа лекарственной формы состава - натрия хлорида 0,5; натрия ацетата 0,2; воды очищенной до 1 л
- Физико-химические закономерности формирования тонкопленочных металлополимерных систем из газовой фазы
- Колебательные химические реакции