Методы и средства обработки аналоговых сигналов
tCs = rп(Cs)
Cmax - теоретический предел производительности системы. Сmax = Cs при t®0. Определяется из следующего уравнения:
rп(Cmax)=0
Приведенные затраты процессорного времени на диспетчеризацию в РТ:
rд(Cрт)=1-rп(Cрт)
По полученным данным вычерчивается график ПНХ.
РАСЧЕТ:
При t®0 Сs®Сmax:
>
Построим ПНХ
Рис. 10
Основные величины и выражения:
Вид ПНХ: rп(С) = 1-168×10-6×С
Суммарная частота запуска прикладных задач в РТ: Срт = 1748
Производительность системы: Сs = 2538,02
Теоретический предел производительности системы: Сmax= 5952,07
Резерв загрузки ЭВМ в РТ: Rрт = 0,1
Загрузка процессора в РТ: rрт(Срт) = 0,396
Максимальная возможная загрузка процессора в РТ: rп(Срт) = 0,706
ТОПОЛОГИЧЕСКИЙ РАСЧЕТ
Цель топологического расчета - построение топологической схемы АСНИ в монтажном пространстве. При этом необходимо решить следующие задачи:
определить топологию сети связи АСНИ;
выбрать модель трассировки линии связи;
разместить оборудование АСНИ в монтажном пространстве по критерию минимума стоимости сети связи.
Модель сети связи АСНИ можно представить в виде древовидной иерархической системы, нулевой уровень которой образуют неподвижные объекты (датчики, внешние устройства ЭВМ (МР, ПУ)), а остальные R уровней иерархии составляют объекты, положением которых можно варьировать (в данном случае это УСД, ЭВМ и разъемы на магистрали). Объекты нулевого уровня будем называть неперемещаемыми объектами (их координаты жестко заданы), а объекты остальных уровней – перемещаемыми (рис.11).
Рис. 11
В АСНИ датчики могут соединятся как непосредственное с УСД, так и через разъемы (псевдообъекты), тоже относится и к внешним устройствам (МР и ПУ) в смысле их соединения с ЭВМ. Аналогичным образом соединяются между собой УСД и ЭВМ (рис.12):
Рис. 12
Для проведения топологического расчета по критерию минимизации стоимости предлагается следующий алгоритм:
ЭТАП 1. ОПРЕДЕЛЕНИЕ ТОПОЛОГИИ СЕТИ СВЯЗИ
Выбирается структура связи между УСД и ЭВМ в зависимости от выбранного варианта интерфейса. Различают древовидную и кольцевую схемы соединений (рис.9):
Рис. 13
В случае древовидной схемы УСД напрямую соединяются с ЭВМ, а в случае кольцевой схемы соединение между ЭВМ и УСД необходимо организовать таким образом, чтобы оно образовывало кольцо. В этом случае УСД соединяются между собой образуя звенья кольца и только два из них соединяются непосредственно с ЭВМ (см. рис 9).
Расчет оптимальных координат для древовидной и кольцевой схем аналогичны, разница только в их соединении между собой.
Для выбранного типа интерфейса АСНИ необходимо использовать кольцевую схему соединения УСД и ЭВМ.
ЭТАП 2. ВЫБОР МОДЕЛИ ТРАССИРОВКИ ЛИНИЙ СВЯЗИ
Также необходимо выбрать модель трассировки межобъектных линий связи. На практике в качестве модели трассировки наиболее часто используют ортоганальную и евклидову метрики:
- ортоганальная метрика
- евклидова метрика
Здесь lij - длина линии связи между i-ым и j-ым объектами.
Так как линии связи в ортоганальной метрике несомненно короче, то за модель трассировки целесообразнее принять именно ее.
Далее строится иерархическое дерево модели сети связи, где на нулевой уровень помещаются датчики, а на остальных размещаются УСД и ЭВМ, также возможно добавление фиктивных устройств (разъемов).
Приводятся графики дерева модели сети связи и размещения датчиков и устройств в монтажном пространстве.
В качестве модели трассировки линии связи примем евклидову метрику, так как она позволяет проложить более короткую линию связи, чем при евклидовой метрике.
Модель сети связи представим в виде следующей кольцевой иерархической системы (рис.14):
Рис.14
Диаграмма размещения датчиков и устройств в монтажном пространстве (рис.15):
Рис.15
ЭТАП 3. РАЗМЕЩЕНИЕ ОБОРУДОВАНИЯ АСНИ В МОНТАЖНОМ ПРОСТРАНСТВЕ ПО КРИТЕРИЮ МИНИМИЗАЦИИ СТОИМОСТИ СЕТИ СВЯЗИ
В нашей задаче имеется только 4уровня в иерархической модели сети связи. Для решения задачи используем следующий графический метод. Оптимизация проводится дважды: сначала минимизируется линия связи по координате X, а затем таким же образом по координате Y.
Введем понятие удельной стоимости сети связи:
Здесь x - искомая оптимальная координата объекта X, который соединен с объектами Xi координаты xi которых известны. Si - удельная стоимость линии связи от объекта X к объекту Xi. m - число объектов связанных с объектом X.
Удельная стоимость сети связи не является стоимостью как таковой, она только характеризует стоимость сети связи в зависимости от положения объектов.
Удельная стоимость записывается для каждой координаты, уровня и фрагмента отдельно. При этом верхний индекс при Q указывает на координату, первый нижний индекс на уровень, а второй нижний индекс на фрагмент (или объект).
Вначале, составляется выражение Q для 0-го уровня, что в общем виде можно записать как:
Здесь j - номер фрагмента.
В этом случае Q будет характеризовать стоимость сети связи между объектами 0-го уровня и объектами 1-го уровня. j - номер объекта на первом уровне, который связан с объектами уровня 0.
Рассмотрим координату Х (иерархическая модель сети связи приведена на рисунке 14):
Для минимизации стоимости сети связи необходимо решить задачу:
Так как в выражении для Q разность (x-xi) стоит под знаком модуля, то при определении производной необходимо следить чтобы эта разница всегда была больше 0, т.е. если значение производной определяется на промежутке где x>xi, то эта разность запишется как (x-xi), а если значение производной определяется на промежутке где x<xi, то эта разность запишется как (xi-x).
Разность (x-xi) назовем узловой точкой с координатой xi. Для каждой Q координатная ось X разбивается узловыми точками на ряд отрезков в каждом из которых производная имеет постоянное значение. Такая координатная ось изображается для всех Q 0-го уровня. На эту ось наносятся значения координат узловых точек и значения производной в образуемых отрезках. Покажем это на примере, но для начала рассмотрим производную и ее график:
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем