Многочлены Лежандра, Чебышева и Лапласа
Нули полиномов Чебышева являются оптимальными узлами в различных интерполяционных схемах. Например, в методе дискретных особенностей, который часто используется при исследовании интегральных уравнений в электродинамике и аэродинамике.
3.
4. Преобразование Лапласа
Преобразование Лапласа — интегральное преобразование, связывающее функцию d="Рисунок 56" src="images/referats/11767/image054.png" alt="\ F(s)">комплексного переменного (изображение) с функцией действительного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.
Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями. Так, свёртка двух функций сводится в пространстве изображений к операции умножения, а линейные дифференциальные уравнения становятся алгебраическими.
Интеграл Лапласа имеет вид:
(5)
где интегрирование производится по некоторому контуру Lв плоскости комплексного переменного z, ставящий в соответствие функции f(z), определенной на L, аналитическую функцию F(p) комплексного переменного p=s+it. Многие интегралы вида (5) были рассмотрены П. Лапласом.
В узком смысле под преобразованием Лапласа подразумевают одностороннее преобразование Лапласа
, (6)
называемое так в отличие от двустороннего преобразования Лапласа
(7)
Преобразование Лапласа – частный вид интегральных преобразований;. преобразования вида (6) или (7) тесно связаны с Фурье преобразованием. Двустороннее преобразование Лапласа (7) можно рассматривать как преобразование Фурье функции , одностороннее преобразование Лапласа (6) - как преобразование Фурье функции j(t) равной при 0 < t < ∞ и равной нулю при -∞ < t < 0.
Подынтегральная комплексная локально суммируемая функция f(t) называется функцией-оригиналом, или просто оригиналом; в приложениях часто удобно трактовать переменное t как время. Функция F(p)=L[f], (р) называется также преобразованием Лапласа оригинала f(t) или изображением по Лапласу. Интеграл (6) понимается, вообще говоря, как условно сходящийся на бесконечности.
Априори возможны три случая:
1) существует действительное число такое, что интеграл (6) сходится при , а при – расходится; это число σс называется абсциссой (условной) сходимости;
2) интеграл (6) сходится при всех р, в этом случае полагают ;
3) интеграл (6) расходится при всех р, в этом случае полагают
Если , то интеграл (6) представляет однозначную аналитическую функцию F(p) в полуплоскости сходимости . Обычно ограничиваются рассмотрением абсолютно сходящихся интегралов (6). Точная нижняя грань тех s, для которых существует интеграл , называется абсциссой абсолютной сходимости
Если а – есть нижняя грань тех s, для которых число а иногда называют показателем роста оригинала f(t).
При некоторых дополнительных условиях оригинал f(t) однозначно восстанавливается по своему F(p). Например, если f(t) имеет ограниченную вариацию в окрестности точки t0 или если f(t) кусочногладкая, то имеет место формула обращения преобразования Лапласа:
(8)
Формулы (6) и (8) позволяют получить ряд соотношений между операциями, производимыми над оригиналами и изображениями, а также таблицу изображений для часто встречающихся оригиналов. Все это составляет элементарную часть операционного исчисления.
В математической физике важные применения находит многомерное преобразование Лапласа:
(9)
где t = (t1, ……, tn)
-точка re-мерного евклидова пространства
Rn, p = (p1, ……, pn) = σ + iτ = (σ1, ……, σn) + (τ1, ……, τn)
-точка комплексного пространства
Cn, n≥1, (p,t) = (σ,t)+i(τ,t) = p1t1 + … +pntn
-скалярное произведение, dt = dt1…dtn - элемент объема в Rn. Комплексная функция f(t) в (9) определена и локально суммируема в области интегрирования
-положительном координатном угле пространства Rn. Если функция f(t) ограничена в C*, то интеграл (9) существует во всех точках удовлетворяющих условию Re(p,t)>0, , которое определяет снова положительный координатный угол
Интеграл (9) определяет голоморфную функцию комплексных переменных p = (p1 ,- pn) в трубчатой области пространства с основанием S. В более общем случае в качестве области интегрирования в (9) и основания Sтрубчатой области можно взять любую пару сопряженных замкнутых выпуклых острых конусов в пространстве с вершиной в начале координат. При n=1 формула (9) переходит в (6), причем - положительная полуось и - правая полуплоскость. Преобразование Лапласа (9) определено и голоморфно и для функций f(t) гораздо более широких классов. Элементарные свойства преобразования Лапласа с соответствующими изменениями остаются справедливыми и для многомерного случая.
Численное преобразование Лапласа - численное выполнение преобразования (6), переводящего оригинал f(t), 0<t<∞ в изображение F(p),, а также численное обращение преобразования Лапласа, т. е. численное нахождение f(t) из интегрального уравнения (6) либо по формуле обращения (8).
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах