Матрицы и определители
Умножение матрицы на число.
Умножение матрицы А на число λ приводит к умножению каждого элемента матрицы на число λ:
λА = , λR.
Из данного определения следует, что общий множитель всех элементов матрицы можно выносить за знак
матрицы.
Пример.
Пусть матрица А =, тогда 5А==.
Пусть матрица В = = = 5.
Свойства умножения матрицы на число:
1) λА = Аλ;
2) (λμ)А = λ(μА) = μ(λА), где λ,μ R;
3) (λА)= λА;
4) 0ּА = 0.
Сумма (разность) матриц.
Сумма (разность) определяется лишь для матриц одного порядка m´n.
Суммой (разностью) двух матриц А и В порядка m´n называется матрица С того же порядка, где = ± (1, 2, 3, …, m ,
j = 1, 2, 3, …, n.).
Иными словами, матрица С состоит из элементов, равных сумме (разности) соответствующих элементов матриц А и В.
Пример. Найти сумму и разность матриц А и В.
= , = ,
тогда =+==,
=–==.
Если же = , = , то А ± В не существует, так как матрицы разного порядка.
Из данных выше определений следуют свойства суммы матриц:
1) коммутативность А+В=В+А;
2) ассоциативность (А+В)+С=А+(В+С);
3) дистрибутивность к умножению на число λR: λ(А+В) = λА+λВ;
4) 0+А=А, где 0 – нулевая матрица;
5) А+(–А)=0, где (–А) – матрица, противоположная матрице А;
6) (А+В)= А+ В.
Произведение матриц.
Операция произведения определяется не для всех матриц, а лишь для согласованных.
Матрицы А и В называются согласованными, если число столбцов матрицы А равно числу строк матрицы В. Так, если , , m≠k, то матрицы А и В согласованные, так как n = n, а в обратном порядке матрицы В и А несогласованные, так как m ≠ k. Квадратные матрицы согласованы, когда у них одинаковый порядок n, причем согласованы как А и В, так и В и А. Если , а , то будут согласованы матрицы А и В, а также матрицы В и А, так как n = n, m = m.
Произведением двух согласованных матриц и
А=, В=
называется матрица С порядка m´k:
=∙, элементы которой вычисляются по формуле:
(1, 2, 3, …, m , j=1, 2, 3, …, k),
то есть элемент i –ой строки и j –го столбца матрицы С равен сумме произведений всех элементов i –ой строки матрицы А на соответствующие элементы j –го столбца матрицы В.
Пример. Найти произведение матриц А и В.
=, =,
∙===.
Произведение матриц В∙А не существует, так как матрицы В и А не согласованы: матрица В имеет порядок 2´2, а матрица А – порядок 3´2.
Рассмотрим свойства произведения матриц:
1) некоммутативность: АВ ≠ ВА, даже если А и В, и В и А согласованы. Если же АВ = ВА, то матрицы А и В называются коммутирующими (матрицы А и В в этом случае обязательно будут квадратными).
Пример 1. = , = ;
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах