Теория случайных функций
Дано: Восстанавливаемая, резервированная система (5,1) с КПУ, вероятность срабатывания КПУравна b.
Время невыхода из строя (т.е. безотказной работы) основного элемента распределено экспоненциально с параметром a.
Время восстановления вышедшего из строя элемента распределено экспоненциально с параметром m.
Тип резервирования - ненагруженный.
Для описания
состояния системы введем двумерный случайный процесс n(t) = (x(t), d(t)) с координатами, описывающими:
- функционирование элементов
x(t) Î {0, 1, 2} - число неисправных элементов;
- функционирование КПУ
d(t) Î {0,1} - 1 - 1, если исправен, 0 - если нет.
Так как времена безотказной работы и восстановления имеют экспоненциальное распределение, то в силу свойств экспоненциального распределения, получим, что x(t) - однородный Марковский процесс.
Определим состояние отказа системы:
Система отказывает либо если переходит в состояние 2 процесса x(t) (т.е. отказ какого-либо элемента при количестве резервных элементов, равным нулю), либо если находится в состоянии 0 процесса x(t) (т.е. отказ какого-либо элемента и отказ КПУ).
Таким образом, можно построить граф состояний системы:
|
|
0 1 |
П |
|
|
|
0 - состояние, при котором 0 неисправных элементов, т.е. состояние n(t) = (0, d(t))
1 - состояние, при котором 1 неисправный элемент, т.е. состояние n(t) = (1, 1)
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах