Матрицы и определители
Таким образом, (А∙В)= ВА.
8) λ(АּВ) = (λА)ּ В = Аּ (λВ), λ,R.
Рассмотрим типов
ые примеры на выполнение действий над матрицами, то есть требуется найти сумму, разность, произведение (если они существуют) двух матриц А и В.
Пример 1.
, .
Решение.
1) + = = =;
2)– ===;
3) произведение не существует, так как матрицы А и В несогласованы, впрочем, не существует и произведения по той же причине.
Пример 2.
=, =.
Решение.
1) суммы матриц, как и их разности, не существует, так как исходные матрицы разного порядка: матрица А имеет порядок 2´3, а матрица В – порядок 3´1;
2) так как матрицы А и В согласованны, то произведение матриц АּВ существует:
·=·==,
произведение матриц ВּА не существует, так как матрицы и несогласованны.
Пример 3.
=, =.
Решение.
1) суммы матриц, как и их разности, не существует, так как исходные матрицы разного порядка: матрица А имеет порядок 3´2, а матрица В – порядок 2´3;
2) произведение как матриц АּВ, так и ВּА, существует, так как матрицы согласованны, но результатом таких произведений будут матрицы разных порядков: ·=, ·=.
·=·=
= = ;
·=·==
= =в данном случае АВ ≠ ВА.
Пример 4.
=, =.
Решение.
1) +===,
2) –= ==;
3) произведение как матриц АּВ, так и ВּА, существует, так как матрицы согласованны:
·==·==;
·==·==
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах