Зарождение и создание теории действительного числа

Однако метод бесконечно малых доказал свою плодотворность и нужность математике, от этого проблема фундамента для интегрального и дифференциального исчисления становилась еще более острой. Споры были не только среди математиков; жестким нападкам подвергалась вся математика, например, со стороны богослова Д. Беркли. Это состояние математики XVII-XVII получило название второго кризиса математики.

Вслед за Ньютоном и Лейбницем попытки определить понятие бесконечно малой предпринимались Эйлером, Даламбером и Лагранжем. Эти попытки нельзя назвать бесполезными, этими работами укрепилось в матетике понятие функций, что сыграло свою роль дальнейшие поиски теории предела. Однако построить связанную и логически обоснованую теорию не получилось.

Таким образом к XIX веку в математике сложилась парадоксальная ситуация. Налицо были несомненные успехи математических наук в естествознании, разработана методика обращения с рядами, дифференцирования и интегрирования, решены многие важные задачи, но понимния на чем основан математический анализ не было. Необходимость разобраться с фундаметом новой математики стала всеобщей и насущной.

Построением стройной и строгой теории бесконечно малых мы обязаны Огюстену Луи Коши(1789-1857). Следует признать, что Коши был не первым математиком, кто пришел к этой идее, но, исторически, его работы сыграли в развитии математического анализа ключевую роль. Коши дал общее определение предела в описательной форме: «Если значения, последовательно приписываемые одной и той же переменной, неограниченно приближаются к фиксированному значению, так что в конце концов отличаются от него сколь угодно мало, то последнее называют пределом всех остальных»[2]. С точки зрения этого определения стало понтным что такое бесконечно малая величина — это всего лишь величина, имеющая предел равный 0, затем Коши определил понятие производной и показал связь этого определения с дифференциалами Лейбница. Также он построил первую строгую теорию интегрирования и доказал связь интегрирования и дифференцирования.

Переоценить вклад Коши в математику трудно. Его работами открывалась новая эпоха в математике, « .начинается так называемая "арифметизация" всей математики»[3, стр. 117]. Благодаря работам Коши математический анализ прочно и заслуженно занял в математике одно из главных мест. Методы Коши получили всеобщее распрастранение, применялись оттачивались весь XIX век. Идеи и методы Коши плодотворно пользуются и обобщаются современными математиками и сегодня.

4 Создание теории действительного числа

После «наведения порядка» в математическом анализе встал вопрос о ситуации в арифметике. «К необходимости разработки теории действительных чисел приводили многие задачи анализа и некоторые способы рассуждений, применявшиеся при решении этих задач»[4, стр. 61]. Проблема основания, понимания того, что же такое число, в XIX в. еще не была решена. С нашей точки зрения, это была задача о пополнении множества рациональных чисел. Ее пытались решить следующим способом(приведен по [4]):

Определим иррациональное число как предел последовательности рациональных чисел. Надо показать, что такая последовательность сходится. Для этого воспользуемся критерием Коши, который будет справедлив для любых рациональных значений, однако для того чтобы ответить на вопрос будет ли он справедлив для действительных чисел необходимо иметь определенными иррациональные числа. Получался замкнутый круг.

Эта задача была решена в XIX веке с разных точек зрения и независимо друг от друга Вейерштрассом, Дедекиндом, Кантором и Мерэ.

4.1 Карл Вейерштрасс

Карл Вейерштрасс родился в городе Остенфельд (предместье Эннигерло), в семье секретаря бургомистра. В 1834 г. с успехом закончил Пандерборнскую гимназию, его имя было в списке 11 самых талантливых учеников. По настоянию отца в 1834 году Вейерштрасс поступает в Боннский университет для получения юридического образования. Но юридические науки его не увлекали, большую часть времени он уделял занятиям математикой. Через 4 года Вейерштрасс бросает университет, не сдав ни одного экзамена. В 1839 году поступает в Мюнстерскую академию, а в 1841 году блестяще сдает выпускную работу. После окончания университета работает учителем в провинциальных городах Германии. В 1845 публикует статью по абелевым функциям, за которую получает докторскую степень от Кенигсбергского университета. В 1861 избирается членом Баварской академии наук. С 1856 по 1889 читает лекции в Берлинском унивеситете. Умер Вейрштрасс в 1897 году.

Математическое творчество отличается стремлением к ясности и строгости. Как пишет о нем Пуанкаре[5]: «Вейерштрасс отказывается пользоваться интуицией или по крайней мере оставляет ей только ту часть, которую не может у нее отнять» Работы Вейерштрасса охватывают широкий круг проблем: абелевы и эллиптические функции, комплексные величины, теория рядов и многие другие.

Вейерштрасс сыграл главную роль в арифметизации математического анализа. Он стремился к тому, чтобы все понятия математики перевести в буквенно-числовые. Он ушел от любых интуитивных и геометрических представлений понятия функции. Чтобы уйти от туманных формулировок вроде «Неограниченное приближение одной величины к другой», был создан язык , который позволял теперь рассматривать функции как числовые соответствия между множествами, непрерывность которых можно установить при помощи арифметических неравенств. Вейерштрасс опроверг некоторые интуитивные представления о функциях, например, он построил непрерывную функцию не имеющей производной ни в одной точке.

Вейерштрасс придерживался точки зрения, что строгость анализа зависит от арифметики. Поэтому он начинает работать над приведением в порядок доставшегося от греков математического наследства несоизмеримых. Он отделяет понятие числа от понятия величины.

Приблизительно в 1863 году Карл Вейерштрасс создает теорию вещественных чисел, которая разрешает логические нестыковки арифметики. К сожалению, он не издавал её, а изложил на лекции своим ученикам. Вейерштрасс дал свое построение в терминах точных частей единицы, но здесь оно рассмотрено в современной трактовке.

Положим что у нас есть рациональные числа. Возьмем множество рациональных такое, что его сумма любого конечного числа элементов не превосходит заданных границ. Если мы будем теперь составлять из этих чисел сумму, то если сумма будет конечной. Таким образом, конечная сумма этих чисел будет представлять рациональное число, мы можем сопоставить любому рациональному числу некоторый конечный набор из некоторого множества . С иррациональным числом этот набор будет бесконечным. Далее, возьмем два бесконечных набора. Будем считать что рациональные числа представлены несократимыми дробями. Рассмотрим набор чисел натуральных чисел . Если для сумма дробей вида из первого множества совпадает с суммой таких же дробей из второго множества, то иррациональные числа совпадают друг с другом. Рассмотрим первый номер для которого это равенство не выполняется. Если для имеет место равенство , где суммы составлены по таким рациональным числам, которые имеют вид , то первое число больше второго. Если имеется обратное неравенство, то второе число больше первого. Сложение чисел определяется операцией объединения множеств. Вычитание определяется как операция обратная сложению. Составление агрегата вида , где умножение составляется по всевозможным элементам, определяет умножение.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы