Системы счисления
Система счисления – это способ представления чисел и соответствующие ему правила действия над числами. Разнообразные системы счисления, которые существовали ранее и существуют теперь, можно разделить на позиционные и непозиционные. Знаки, которые используются при записи чисел, называются цифрами.
В непозиционных системах счисления от положения цифры в записи числа не зависит величина, кот
орую она обозначает.
Примером непозиционной системы счисления является римская система (римские цифры). В римской системе в качестве цифр используются латинские буквы:
I V X L C D M
1 5 10 50 100 500 1000
Пример 1. Число CCXXXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.
В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если же слева записана меньшая цифра, а справа – большая, то их значения вычитаются.
Пример 2.
VI=5+1=6, а IV=5-1=4
Пример 3.
MCMXCVIII =1000+ (1000-100) + (-10+100) +5+1+1+1=1998
В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием позиционной системы счисления.
Система счисления, применяемая в современной математике, является позиционной десятичной системой. Ее основание равно десяти, т.к. запись любых чисел производится с помощью десяти цифр:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Позиционный характер этой системы легко понять при наличии любого многозначного числа. Например, в числе 333первая тройка означает три сотни, вторая – три десятка, а третья – три единицы.
Для записи чисел в позиционной системе счисления с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n < 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют буквы. Вот примеры алфавитов нескольких систем:
Основание |
Название |
Алфавит |
n=2 |
двоичная |
0 1 |
n=3 |
троичная |
0 1 2 |
n=8 |
восьмеричная |
0 1 2 3 4 5 6 7 |
n=16 |
шестнадцатеричная |
0 1 2 3 4 5 6 7 8 9 A B C D E F |
Если требуется указать основание системы, к которой относится число, то оно приписывается нижним индексом к этому числу. Например:
В системе счисления с основанием q (q-ичная система счисления) единицами разрядов служат последовательные степени числа q. q единиц какого-либо разряда образуют единицу следующего разряда. Для записи числа в q-ичной системе счисления требуется q различных знаков (цифр), изображающих числа 0,1,…,q-1. запись числа q в q-ичной системе счисления имеет вид 10.
Развернутой формулой записи числа называется запись в виде
Здесь – само число, q – основание системы счисления, - цифры данной системы счисления, n – число разрядов целой части числа, m – число разрядов дробной части числа.
Пример 4. получить развернутую форму десятичных чисел 32478; 26,387.
Пример 5. получит развернутую форму чисел
, , ,
Обратите внимание, что в любой системе счисления ее основание записывается как 10.
Если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то получится число в десятичной системе, равное данному. По этому принципу производится перевод из недесятичной системы в десятичную.
Пример 6. Все числа из предыдущего примера перевести в десятичную систему.
Задачи
№1
Какие числа записаны с помощью римских цифр:
MMMD, IV, XIX, MCXCIVII?
№2
Запишите год, месяц и число вашего рождения с помощью римских цифр.
№3
В старину на Руси широко применялась система счисления, отдаленно напоминающая римскую. С ее помощью сборщики податей заполняли квитанции об уплате податей. Для записи чисел употреблялись следующие знаки:
Звезда – тысяча рублей, колесо – сто рублей, квадрат – десять рублей,
Х – один рубль, I I I I I I I I I I – десять копеек, I – копейка.
Запишите при помощи старинной русской системы счисления сумму 3452 рубля 43 копейки.
№4
Какая сумма записана при помощи старинной русской системы счисления
Х Х Х I I I I I I I I I I I I I
№5
Придумайте свою непозиционную систему счисления и запишите в ней числа 45, 769, 1001.
№6
В некоторой системе счисления цифры имеют форму различных геометрических фигур. На рисунке приведены некоторые числа, записанные этой системе счисления:
- 4 -190
- 6 - 1900
-19
Какому числу соответствует следующая запись:
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах