Акустические методы контроля материалов
Рефракция звука является важным фактором, влияющим на распространение звука в атмосфере, океане и толще Земли. Рефракционные эффекты могут наблюдаться также при распространении ультразвука в изделиях и материалах, если скорость звука в них меняется по толщине, например, вследствие поверхностной цементации. Поэтому рефракция звука положена в основу акустических методов контроля качества цементац
ии массивных сооружений (плотин и т.п.) и степени уплотнения грунтов под собственным весом и при внешних нагрузках.
Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет. При одновременном движении в ткани нескольких ультразвуковых волн в определённой точке среды может происходить суперпозиция этих волн. Такое наложение волн друг на друга носит общее название интерференции. Если в процессе прохождения через биологический объект ультразвуковые волны пересекаются, то в определённой точке биологической среды наблюдается усиление или ослабление колебаний. Результат интерференции будет зависеть от пространственного соотношения фаз ультразвуковых колебаний в данной точке среды. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях способствует увеличению амплитуды ультразвуковых колебаний. Если же ультразвуковые волны приходят к конкретному участку в противофазе, то смещение частиц будет сопровождаться разными знаками, что приводит к уменьшению амплитуды ультразвуковых колебаний.
3. Прием и излучение ультразвука
Ультразвук - это упругие колебания и волны с частотами приблизительно от 1,5- 2 ×104гц (15-20 кгц) и до 109 гц (1 Ггц), область частот ультразвука от 109 до 1012-13гц принято называть гиперзвуком. Область частот ультразвука можно подразделить на три подобласти: ультразвук низких частот (1,5×104-105 гц) - УНЧ, ультразвук средних частот (105 - 107 гц) - УСЧ и область высоких частот ультразвука (107-109гц) - УЗВЧ.
Для генерирования ультразвуковых колебаний применяют разнообразные устройства, которые могут быть разбиты на 2 основные группы - механические (источником ультразвука является механическая энергия потока газа или жидкости) и электромеханические (ультразвуковая энергия получается преобразованием электрической). Механические излучатели ультразвука - воздушные и жидкостные свистки и сирены - отличаются сравнительной простотой устройства и эксплуатации, не требуют дорогостоящей электрической энергии высокой частоты, кпд их составляет 10-20%. Основной недостаток всех механических ультразвуковых излучателей - сравнительно широкий спектр излучаемых частот и нестабильность частоты и амплитуды, что не позволяет их использовать для контрольно-измерительных целей; они применяются главным образом в промышленной ультразвуковой технологии и частично - как средства сигнализации.
Основной метод излучения ультразвука - преобразование тем или иным способом электрических колебаний в колебания механические. В диапазоне УНЧ возможно применение электродинамических и электростатических излучателей. Широкое применение в этом диапазоне частот нашли излучатели ультразвука, использующие магнитострикционный эффект в никеле и в ряде специальных сплавов, также в ферритах. Для излучения УСЧ и УЗВЧ используется главным образом явление пьезоэлектричества. Основными пьезоэлектрическими материалами для излучателей ультразвука служат пьезокварц, ниобат лития, дигидрофосфат калия, а в диапазоне УНЧ и УСЧ - главным образом различные пьезокерамические материалы. Магнитострикционные излучатели представляют собой сердечник стержневой или кольцевой формы с обмоткой, по которой протекает переменный ток, а пьезоэлектрические - пластинку (рис. 5) или стержень из пьезоэлектрического материала с металлическими электродами, к которым прикладывается переменное электрическое напряжение. В диапазоне УНЧ широкое распространение получили составные пьезоизлучатели, в которых пьезокерамическая пластинка зажимается между металлическими блоками.
Рис. 5 - Излучение (приём) продольных волн L пластинкой, колеблющейся по толщине в твердое тело: 1 - кварцевая пластинка среза Х толщиной l/2, где l - длина волны в кварце; 2 - металлические электроды; 3 - жидкость (трансформаторное масло) для осуществления акустического контакта; 4 - генератор электрических колебаний; 5 - твёрдое тело
Предельная интенсивность излучения ультразвука определяется прочностными и нелинейными свойствами материала излучателей, а также особенностями использования излучателей. Диапазон интенсивности при генерации ультразвука в области УСЧ чрезвычайно широк: интенсивности от 10-14-10-15вт/см2 до 0,1вт/см2 считаются малыми. Для многих целей необходимо получить гораздо большие интенсивности, в этих случаях можно воспользоваться фокусировкой ультразвука.
Выбор метода генерации ультразвука зависит от области частот ультразвука, характера среды (газ, жидкость, твёрдое тело), типа упругих волн и необходимой интенсивности излучения.
Вследствие обратимости пьезоэффекта он широко применяется и для приёма ультразвука. Изучение ультразвукового поля может производиться и оптическими методами: ультразвук, распространяясь в какой-либо среде, вызывает изменение её оптического показателя преломления, благодаря чему его можно визуализировать, если среда прозрачна для света.
4. Ультразвук в различных средах
Ультразвуковые волны распространяются только в материальной среде. Они характеризуются длиной волны частотой (f) и скоростью распространения (С). Длина волны выражается отношением скорости распространения к частоте колебания.
Частотная граница между звуковыми и ультразвуковыми волнами поэтому условна; она определяется субъективными свойствами человеческого слуха и соответствует усреднённой верхней границе слышимого звука. Однако благодаря более высоким частотам и, следовательно, малым длинам волн имеет место ряд особенностей распространения ультразвука. Так, для УЗВЧ длины волн в воздухе составляют 3,4․10-3-3,4․10-5 см, в воде 1,5․10-2-1,5 ․10-4 см и в стали 5․10-2- 5․10-4 см. Ультразвуковые колебания низкочастотного диапазона будут приближаться по своим физическим свойствам к звукам, у высокочастотных ультразвуков появляются особенности, не свойственные звукам Частотная характеристика и длина волны в значительной мере определяет особенности распространения колебаний в окружающей среде. Если низкочастотные ультразвуки обладают способностью распространяться в воздушной среде, то ультразвуки высокой частоты практически в воздухе не распространяются.
Ультразвук в газах и, в частности, в воздухе распространяется с большим затуханием. Жидкости и твёрдые тела (в особенности монокристаллы) представляют собой, как правило, хорошие проводники ультразвука, затухание в которых значительно меньше. Так, например, в воде затухание ультразвука при прочих равных условиях приблизительно в 1000 раз меньше, чем в воздухе. Поэтому области использования УСЧ и УЗВЧ относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и газах применяют только УНЧ. Ввиду малой длины волны ультразвука на характере его распространения сказывается молекулярная структура среды, поэтому, измеряя скорость ультразвука с и коэффициент поглощения α, можно судить о молекулярных свойствах вещества. Характерная особенность распространения ультразвука в газах и жидкостях - существование отчётливо выраженных областей дисперсии, сопровождающейся резким возрастанием его поглощения. Коэффициент поглощения ультразвука в ряде жидкостей существенно превосходит рассчитанный по классической теории и не обнаруживает предсказанного этой теорией увеличения, пропорционального квадрату частоты. Все эти эффекты находят объяснение в релаксационной теории, которая описывает распространение ультразвука в любых средах и является теоретической базой современной молекулярной акустики, а основной экспериментальный метод - измерение зависимости с и особенно α от частоты и от внешних условий (плотности, упругости, вязкости, температуры и др.). Так, например, при повышении температуры воздуха на 1° скорость увеличивается на 0,5 м/с.
Другие рефераты на тему «Производство и технологии»:
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды