Автоматическое управление микроклиматом теплицы по нескольким параметрам с помощью установки ОРМ-1
Содержание
Введение
1. Принципиальная схема автоматического управления микроклиматом теплицы по нескольким параметрам
2. Функциональная схема автоматического управления микроклиматом теплицы по нескольким параметрам
3. Функционально-технологическая схема автоматического управления микроклиматом теплицы
4. Выбор типа технологического оборудования и расчет технических
средств автоматики
Список использованных источников
Введение
Комплексная механизация, электрификация и автоматизация технологических процессов является главным направлением развития современного сельского хозяйства.
Внедрение систем автоматизации в сельскохозяйственном производстве позволит завершить комплексную автоматизацию трудоемких процессов в животноводстве и птицеводстве, повысить производительность труда, сократить численность работников, улучшить качество продукции и снизить затраты на ее производство.
В данной курсовой работе рассматривается система автоматического управления микроклиматом по нескольким параметрам на примере установки ОРМ-1, предназначенной для автоматического управления микроклиматом (температурой и влажностью) в теплицах.
Защищенный грунт (теплицы, парники, утепленный грунт) широко используются для выращивания овощей и разнообразного посадочного материала. Достаточно отметить, что большинство овощных культур выращивают из рассады, приготовленной в парниках.
Автоматизация технологических операций в защищенном грунте дает несомненный эффект: увеличивается производительность и улучшаются условия труда, экономится топливо и электроэнергия, снижается заболевание посадочного материала, повышается урожайность и снижаются сроки созревания растений, овощей и других культур.
Автоматическое управление микроклиматом широко используется и в животноводстве, особенно при выращивании молодняка, который наиболее чувствителен к изменениям условий окружающей среды.
1. Принципиальная схема автоматического управления микроклиматом теплицы по нескольким параметрам
В следяще-управляющую систему входят пять электроконтактных термометров ТК-6, двухпозиционный камерный влагорегулятор ВДК, электроконтактный флюгер и шкаф управления. Электроконтактные термометры используются в качестве датчиков температуры: два работаю днем, два – ночью, пятый предназначен для подачи светового и звукового аварийного сигнала при снижении температуры до минимального предельного значения. Датчики температуры и влажности размещены в шкафчике, который устанавливают в центре теплицы на высоте 1,5 – 2 м от почвы. Микропереключатель флюгера, размещенного на крыше, в зависимости от направления ветра выдает импульс на включение вентиляции левой или правой подветренной стороны верхних фрамуг теплицы.
Исполнительные устройства управления температурой содержат два калорифера, установленных у торцевых стен теплицы, два электромагнитных вентиля, открывающих доступ теплоносителю в калориферы, и узел вентиляции теплиц с приводом для фрамуг.
В устройства управления влажностью входят электромагнитные вентили с трубопроводами, сточные желоба, водогрейный бойлер, насосная станция и распылители. Элементы управления электрооборудованием размещены в шкафах.
Продолжительность дневного и ночного режимов теплицы устанавливаются посредством программного реле времени, которое своим контактом КТ1 (рис. 1.) переключает через реле KV1 термометры SK1 и SK3 на термометры SK2 и SK4 (и наоборот, работающие соответственно днем или ночью). Термометры SK1 и SK2 настраивают на верхний, а термометры SK3 и SK4 – на нижний предел управления температурой. Когда температура станет ниже допустимой, размыкаются контакты SK3 или SK4 и отключают реле KV3, в результате чего срабатывает реле KV7 и включает пускатель KM6. В работу вводятся электродвигатели M4 и М5 вентиляторов калориферов и открываются электромагнитные вентили YA2 и YA4. Вентили ставятся на механические защелки и пропускают теплоноситель в калориферы. По достижении заданной температуры контакты SK3 или SK4 замыкаются, остальные элементы возвращаются в исходное положение. Вентили снимаются с защелок с помощью электромагнитов YA3 и YA5 и закрываются.
Когда температура достигает максимального допустимого значения, замыкаются контакты SK1 или SK2 и включается реле KV2. В результате в зависимости от положения контактов флюгера SA2 срабатывают реле KV5 или KV6 и включают пускатели KM3 или KM5 двигателей М2 или М3 лебедок, связанных тросами с фрамугами правой или левой стороны теплицы. Степень открытия форточек определяется положением концевых выключателей SQ1 и SQ2, которые в определенный момент размыкают цепь тока и останавливают двигатели.
Если температура снизилась до заданной, то реле KV2 отключается и обесточивает реле KV5 или KV6. При этом включаются магнитные пускатели KM2 или KM5 реверса электродвигателей M2 или M3 и форточки закрываются, а двигатели отключаются концевыми выключателями SQ1 или SQ2.
Автоматическое управление влажностным режимом происходит следующим образом. Контакт KT2 программного реле времени выдает в дневное время через определенный интервал импульсы заданной длительности на включение системы увлажнения. Дождевание произойдет, если влажность в теплице ниже установленной, при которой замыкаются контакты датчика влажности Sf, и срабатывает реле KV4. Реле KV4 подает питание на магнитный пускатель KM1 электродвигателя M1 водонасосной станции и электромагнитный вентиль YA1, открывающий доступ воды к распылителям. Дождевание прекращается при размыкании контактов KV2, и схема возвращается в исходное положение. О работе каждого реле сигнализируют соответствующие лампы HL1…HL8. Термометр SK5 аварийной сигнализации через реле KV8 включает звонок HA и лампу HL8, когда температура станет недопустимо низкой.
2. Функциональная схема автоматического управления микроклиматом теплицы по нескольким параметрам
На функциональной схеме (рис. 2) объектом управления ОУ является теплица, ВО1 и ВО2 – воспринимающие органы датчиков температуры SK1…SK4, СО1 и СО2 – сравнивающие органы этих же датчиков, настроенные на максимальную и минимальную температуры, ВО3 и СО3 – воспринимающий и сравнивающий органы датчика влажности Sf, ПО1 и ПО2 – программные органы, реле времени КТ1 и КТ2; усилительные органы: УО1 – реле KV2, УО2 – реле KV3, УО3 – реле KV1, УО4 – реле KV4, УО5 – реле KV5, УО6 – реле KV6, УО7 – магнитные пускатели КМ3 и КМ5, УО8 – реле KV7, УО9 – магнитный пускатель КМ6, УО10 – магнитный пускатель КМ1; ИО1 – исполнительный орган, электродвигатели лебедок М2 и М3; ИО2 – электродвигатели вентиляторов и калориферов М4 и М5; ИО3 – электродвигатель М1 водонасосной станции.
3. Функционально–технологическая схема автоматического управления микроклиматом теплицы
Другие рефераты на тему «Производство и технологии»:
- Мази в промышленном производстве
- Классификация оборудования нефтегазоперерабатывающего завода по монтажным признакам
- Расчет вихревого холодильно-нагревательного аппарата
- Автоматический литейный конвейер
- Изучение металлургических свойств нового типа железорудного сырья (маггемитовых руд) для подготовки к доменной плавке
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды