Получение титана из руды

В легированных сталях рост зерен аустенита тормозится карбидами и карбонитридами легирующих элементов V, Ti, Nb, микродобавки которых в количестве около 0,1 % специально вводят в стали с целью сохранения мелкого зерна аустенита вплоть до 1000 °С. Использование этих элементов одновременно обеспечивает мелкозернистую структуру и снижение критической температуры хрупкости.

Помимо перечисленных

дефектов в металле имеются макродефекты объемного характера: поры, газовые пузыри, неметаллические включения, микротрещины и т. д. Эти дефекты снижают прочность металла.

3. Пользуясь диаграммой состав - свойства, укажите и объясните, с какой структурой можно получить сплавы с высоким удельным электросопротивлением и почему.

Сплавы с особенностями электросопротивления

Сплавы с особенностями электросопротивления делятся на три группы:

- проводниковые;

- с высоким электросопротивлением;

- диэлектрики.

К проводниковым сплавам предъявляются следующее эксплуатационные и технологические требования:

- малое электрическое сопротивление;

- высокая прочность (для предохранения от провисания);

- высокая пластичность и способность к холодному и горячему деформированию;

- хорошая коррозионная стойкость;

- легкость пайки и сварки (при монтаже).

Этим требованиям удовлетворяют (в различной степени) Ag, Си, А1, Fe.

Одним из важнейших проводниковых материалов является медь (Сu), которая по свойствам близка к серебру ( плотность ρ = 8,9 г/см2 при 20 оС, удельное электросопротивление – 0,017( Ом*мм)/м2. Кристаллическая решётка меди – ГЦК с параметром а = 0,36 Нм. Удельное электросопротивление меди принимается за эталон.

Марки меди: M1 (99,9 %), Тпл = 1083 оС; МО (99,95 %), Ткип = 2360 °С; МОО (99,99 %). В технической меди могут присутствовать вредные примеси: висмут (≤ 0,002 %), свинец (≤ 0,005 %), сера, кислород, которые уменьшают пластичность меди.

Чистая медь имеет малую прочность, поэтому её легируют кадмием (Cd), что приводит к незначительной потере электропроводности при сохранении достаточно высокой прочности. Проводимость таких сплавов составляет 80-90 % от проводимости чистой меди. Сплав, упрочненный наклепом, имеет проводимость 98 % от проводимости меди.

Алюминий (А1) имеет электросопротивление больше, чем у меди в 1,7 раза, но он легче. Для линий передач применяют сплав альдрей (0,4 % Mg, 0,6 % Si, 0,25 % Fe). К таким сплавам относятся АД000, АД0.

Большую прочность имеют биметаллы системы Fe - A1. Биметаллический провод (стальной провод, покрытый медью) используют при передаче переменных токов повышенной частоты.

Железо (Fe) имеет электросопротивление в 6-7 раз ниже электросопротивления меди. Сплавы железа (сталь с 0,1 – 0,15 % С) применяются для шин, рельсов электрических железных дорог и метро.

Сплавы с высоким электросопротивлением

Сплавы с высоким электросопротивлением применяют для изготовления элементов сопротивления реостатов и нагревательных элементов. Структура таких сплавов формируется на базе твердых растворов и к ним предъявляются следующие требования:

- они должны обладать высоким удельным электросопротивлением;

- должны иметь малый температурный коэффициент электросопротивления;

- должны обладать высокой окалиностойкостью (жаропрочностью);

- в них должны отсутствовать структурные превращения при нагревах и охлаждениях.

Для элементов сопротивления реостатов применяются сплавы:

- манганин – МНМц 3-12 (11,5-13 % Mn, 2,5-3,5 % Ni,остальное Сu);

- константан - МНМц 40-1,5 (1-2%. Mn, 39-41 % Ni, остальное Сu).

Эти сплавы имеют малый коэффициент электросопротивления: манганин в интервале температур от – 60 до +80 °С и константан в интервале температур от - 60 до + 350 °С.

Для нагревательных элементов применяют сплавы:

- железоалюминиевые: фехраль - Х13Ю4 (≤ 0,15 % С, 13 % Сu, 4 % Al), хромалъ - ОХ23Ю5 (≤ 0,05 % С, 23 % Сr, 5 % Al);

- никелевые: ферронихром - X15H60 (25 % Fe), нихром -Х20Н80. Сплав для деталей нагревательных приборов выпускается в виде проволоки или ленты.

4. Начертите диаграмму железо-цементит, укажите структуру во всех областях. Опишите превращения, протекающие в стали, содержащей 1,8% углерода, при медленном охлаждении от 1400° до 20°С.

Диаграмма желез-цементит

Затвердевание стали происходит в интервале температур ограниченных линией ликвидуса АС и линией солидуса АЕ; при этом из жидкости кристаллизуется аустенит, т. е. твердый раствор углерода в γ-модификации железа.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит.

При охлаждении заэвтектоидной стали по линии ES из твердого раствора (аустенита) выделяется цементит вследствие уменьшения растворимости углерода в γ-Fe с понижением температуры. Вследствие выделения вторичного цементита уменьшается содержание углерода в оставшемся аустените. На линии перлитовых превращений аустенит содержит 0,8% углерода и при дальнейшем охлаждении распадается с образованием перлита. Следовательно, ниже линии РК в условиях медленного охлаждения (в равновесном состоянии) сталь с содержанием углерода 1,8 % состоит из следующих структурных составляющих:

перлит + цементит вторичный.

Такой сплав называется - заэвтектоидная сталь.

Кривая охлаждения сплава,

5. Объясните, почему применение термической обработки разрешает уменьшить металлоемкость машин, механизмов, оборудования

Термическая обработка металлов и сплавов является одной из важнейших составляющих любого технологического процесса изготовления металлических изделий, цель, которой заключается в создании требуемого комплекса механических либо иных физико-химических свойств материала изделия, в увеличении эксплуатационных характеристик работы изделий в конструкциях, машинах и агрегатах, а также в улучшении технологичности материала при получении изделий. Роль термической обработки металлов и сплавов трудно переоценить. Она, как основной упрочняющий вид обработки, обеспечивает надежность и достаточную долговечность работы машин и механизмов, уменьшает их металлоемкость, массу, снижает энергетические эксплуатационные затраты. Многие специальные металлические материалы, например, коррозионностойкие, инструментальные быстрорежущие стали приобретают эти свойства только в результате специальной термической обработки. Практически во всех случаях применение термической обработки по оптимальным режимам увеличивает эффекты повышения свойств сплавов, достигаемых при легировании. Наконец, предварительная термическая обработка слитков, заготовок и промежуточных полуфабрикатов обеспечивает принципиальную возможность проведения холодной или горячей обработки давлением, делает их более технологичными, улучшает обрабатываемость резанием, позволяет улучшить свойства готового изделия за счет получения более рациональной исходной его микро- и макроструктуры.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы