Характеристики локомотивов
Xцт = ∑Mi ÷ ∑Gi
где ∑Mi - суммарный момент сил тяжести узлов и оборудования, входящих в верхнее строение тепловоза, кН*м;
∑Gi - вес верхнего строения тепловоза, кН;
Xцт = 4262,68 ÷ 453,7 = 9,4 (м)
Для определения нагрузок на тележки используют уравнения статики. Раму тепловоза представляем в виде балки, расположенной на двух мнимых опорах.
Нагрузки на тележки заменяют реакциями РА и РБ мнимых опоров (рис. 1,1) на схеме также указываются геометрическая середина тепловоза (Lт/2) и координата Xцт центра тяжести ∑Gi верхнего строения тепловоза, а также вектор силы тяжести ∑Gi.
Рис. 1,1 Схема для определения неравномерности распределения нагрузок по тележкам локомотив;
Несовпадение центра тяжести Xцт и геометрического центра тяжести верхнего строения тепловоза ∆Х можно определить из выражения, мм
∆Х = | Xцт' – Xцт |
Xцт - центр тяжести тепловоза, м
Xцт' = Lт ÷ 2
Xцт' = 19,27 ÷ 2 = 9,64 (м)
∆Х = | 9,64 - 9,4 | = 0,24 (м)
Определим, равномерно ли распределена нагрузка на колёсные пары (и тележки) локомотива. Для определения нагрузок на тележки используют уравнения статики. В соответствии со схемой сил, показанной на схеме для определения неравномерности распределения нагрузок по тележкам локомотива, уравнение проекций всех сил на вертикальную ось ординат Z будет иметь вид:
РА + РБ - ∑Gi = 0 (1)
Уравнение моментов этих сил относительно точки «О»
PA * lА + PБ * lБ - ∑Gi * Xцт = O (2)
где PA и PБ - реакции в мнимых опорах тележек, вызванные действием силы тяжести (веса) ∑Gi, верхнего строения тепловоза, кН;
lА и lБ - расстояния от оси моментов Z до мнимых опор А первой (по ходу) и Б второй тележек, м
Из уравнения (1):
PA = ∑Gi - PБ (3)
Подставим (3) в (2) и найдём из получившегося уравнения PБ:
PБ = ∑Gi (Xцт - lА) ÷ (lБ - lА)
PБ = 453,7 * (9,4 - 4,2) ÷ (14,1 - 4,2) = 233,7 кН.
Подставив значение PБ в уравнение (3), найдём PA:
PA = 453,7 – 233,7 = 220 кН.
По нормам, применяемых при проектировании тепловоза, неравномерность распределения нагрузок ∆2П по колесным парам разных тележек не должна превышать величины ±0,03. В этом случае величина ∆2П может быть определена из следующего выражения, кН:
∆2П = |2П1 - 2П2| ÷ 2П
где 2П - нагрузка от каждой из колесных пар первой тележки, кН.
2П1 = (РА + Gт) ÷ Nт
где Gт - вес тележки тепловоза, кН;
Nт - количество осей в тележке, кН;
2П1 - нагрузка от каждой из колесных пар второй тележки, кН
2П1 = (220 + 147) ÷ 3 = 122,3 кН
2П2 = (РБ + Gт) ÷ Nт
2П2 = (233,7 + 147) ÷ 3 = 126,9 кН
2П2 - нагрузка от колесной пары на рельсы при равномерном распределении нагрузок по колесным парам тепловоза, кН.
Тогда:
∆2П = |122,3 – 126,9| ÷ 194 = 0,024
4. Определение тяговой характеристики тепловоза
Первое ограничение касательной силы тяги тепловоза - по «сцеплению»
FКmax ≤ ψK * PСЦ
где Рсц - сцепной вес локомотива с учётом числа секций, кН;
ψK - расчетный коэффициент сцепления. Определение значений расчетного коэффициента сцепления для тепловоза М62
ψK = 0,118 + [5 ÷ (27,5 + v)]
Воспользовавшись выражением FКmax ≤ ψK * PСЦ рассчитаем ограничение тяговой характеристики FК = f (v) по сцеплению.
Таблица 2
Результаты расчетов ограничения кривой FК = f (v) по сцеплению.
V км/ч |
0 |
5 |
10 |
15 |
20 |
25 |
30 |
ψK |
0,299 |
0,271 |
0,251 |
0,235 |
0,223 |
0,213 |
0,201 |
FК кН |
384 |
315,4 |
292,2 |
273,5 |
259,6 |
247,9 |
234 |
Второе ограничение касательной силы тяги - по мощности силовой установки.
FК = 3600 * Ne * φ ÷ v
где Ne - эффективная мощность дизеля кВт;
φ - коэффициент использования мощности дизеля, φ = 0,72
По формуле FК = 3600 * Ne * φ ÷ v рассчитаем ограничение тяговой характеристики FК = f (v) no мощности силовой установки.
Таблица 3
Результаты расчетов ограничения кривой FК = (vк) по мощности дизеля
V км/ч |
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
100 |
FК кН |
381 |
190,5 |
127 |
95,3 |
76,2 |
63,5 |
54,4 |
47,6 |
42,3 |
38,1 |
После всех расчетов построим расчетную тяговую характеристику проектируемого тепловоза (см. приложение рис. 1).
5. Гасители колебаний
Тепловоз, как и любой локомотив, фактически движется не по ровным и гладким рельсам, какими они кажутся на вид, а по рельсам, имеющим неровности. Такие же неровности есть и на поверхности катания колес. По мере износа (в период эксплуатации локомотива, между обточками колесных пар) эти поверхности становятся неточными окружностями. Если бы неровностей не было, если бы рельсы и колеса, катящиеся по ним, были идеальными, если бы жесткость пути на всех участках была одинаковой, не возникало бы ни ударов, ни толчков, а следовательно, и колебаний тепловоза. Но этого практически не бывает. При наезде колеса на неровности рельсов, .и особенно на стыки, возникают удары, и тем сильнее, чем выше скорость. Сила ударов, напоминающих удары молота по наковальне, при скорости 100—120 км/ч достигает нескольких сотен килоньютонов (десятков тонно-сил). Кроме ударов в вертикальном направлении, возникают динамические усилия и в горизонтальной плоскости. Динамические нагрузки передаются оборудованию тепловоза также при вписывании его в кривые участки пути.
Ясно, что вовсе избавиться от ударов невозможно. Но зато можно уменьшить их силу, а следовательно, спасти дизель и другое оборудование, размещенное в кузове, да и сам кузов и рамы тележек от разрушения, а локомотивную бригаду избавить от сильной утомительной тряски. Что же для этого нужно сделать? Очевидно, надо преградить дорогу ударам. Условно разъединим колесные пары с буксами от рам тележек и в местах разрыва поставим упругий барьер — комплекс упругих тел, соединяющих буксы колесных пар с рамами тележек. В этом случае цепь, по которой передается кинетическая энергия ударов, будет прервана упругими телами, т. е. телами, обладающими упругой деформацией. Одним из наиболее распространенных видов упругих тел, применяемых на транспортных средствах, является листовая рессора (от французского ressort, что означает упругость). Ознакомимся с ее устройством.
Другие рефераты на тему «Транспорт»:
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск