Электроснабжение электромеханического цеха
При выборе этих трансформаторов необходимо учитывать их токсичность при наличии течи совтола, так как при этом выделяются вредные пары, длительное вдыхание которых вызывает раздражение слизистых оболочек глаз и носа.
Сухие трансформаторы имеют ограниченное применение, так как они дороже масляных и имеют следующие недостатки:
· боятся грозовых перенапряжений;
· создают при работе пов
ышенный шум по сравнению с масляными;
требуют установки в сухих непыльных помещениях с относительной влажностью не более 65%.
Применение сухих трансформаторов целесообразно при их мощности от 10 до 400 кВА. В основном они применяются там, где недопустима установка масляных трансформаторов из-за пожарной опасности, а трансформаторов с негорючей жидкостью из-за их токсичности.
Номинальная мощность трансформатора. Наивыгоднейшая мощность трансформатора зависит от многих факторов:
величины и характера графика электрической нагрузки;
длительности нарастания нагрузки по годам;
числа часов работы объекта электроснабжения;
стоимости энергии и др.
Указанные факторы сочетаются различным образом и изменяются во времени.
Определяем расчетную мощность трансформатора с учетом потерь но без компенсации реактивной мощности:
Sт ≥ Sр = 0,7 Sвн = 0,7 · 176.3 = 123.41 кВ · А.
Sт ≥ 123.41 кВ · А
По (3) выбираем трехфазный масляный трансформатор типа ТМ – 250/ 10/ 0,4.
Рассчитываем коэффициент загрузки трансформатора
Кз = Sнн/ Sт;
Кз = 160 / 250 = 0,64.
U1н = 10.6 кВ;
U2н = 0.4; 0.38 кВ;
Uк = 4.5%.
Мощность потерь:
Рхх = 0.82 кВт;
Ркз = 3.7 кВт;
Lхх = 2.3%.
Выбрана цеховая КТП 250 – 10/0.4; Кз = 0.64.
Расчет компенсирующих устройств (КУ) и выбор трансформатора.Передача значительного количества реактивной мощности из энергосистемы к потребителям нерациональна по следующим причинам: возникают дополнительные потери активной мощности и энергии во всех элементах системы электроснабжения, обусловленные загрузкой их реактивной мощностью, и дополнительные потери напряжения в питательных сетях. Ввод источника реактивной мощности приводит к снижению потерь в период максимума нагрузки в среднем на 0,081 кВт/квар. В настоящее время степень компенсации в период максимума составляет 0,25 квар/кВт, что значительно меньше экономически целесообразной компенсации, равной 0,6квар/кВт.
При выборе средств компенсации реактивной мощности в системах электроснабжения промышленных предприятий необходимо различать по функциональным признакам две группы промышленных сетей в зависимости от состава их нагрузок: первая группа - сети общего назначения (сети с режимом прямой последовательности основной частоты 50 Гц.); вторая группа – сети со специфическими нелинейными, несимметричными и резко переменными нагрузками.
Наибольшая суммарная реактивная нагрузка предприятия, принимаемая для определения мощности компенсирующей установки равна: QM1=KHCQP, где KHC – коэффициент учитывающий несовпадения по времени наибольшей активной нагрузки энергосистемы и реактивной нагрузки предприятия.
По входной реактивной мощности QЭ1 определяют суммарную мощность компенсирующего устройства предприятия, а по назначению QЭ2 регулируемую часть компенсирующего устройства. Суммарную мощность компенсирующего устройства QЭ1 определяют по балансу реактивной мощности на границе электрического раздела предприятия и энергосистемы в период наибольшей активной нагрузки энергосистемы: QK1=QM1+QЭ2. Для промышленных предприятий с присоединяемой суммарной мощностью трансформаторов менее 750 кВ*А, значение мощности компенсирующего устройства QЭ1 задается энергосистемой и является обязательным при выполнении проекта электроснабжения предприятия.
По согласованию с энергосистемой, выдавшей технические условия на присоединение потребителей, допускается принимать большую по сравнению с QЭ1 суммарную мощность компенсирующего устройства, если это снижает приведенные затраты на систему электроснабжения предприятия в целом.
Средствами компенсации реактивной мощности являются в сетях общего назначения батареи конденсаторов (низшего напряжения – НБК и высшего напряжения – ВБК) и синхронные двигатели в сетях со специфическими нагрузками, дополнительно к указанным средствам, силовые резонансные фильтры (СРФ), симметрирующие и фильтросимметрирующие устройства, устройства динамической и статической компенсации реактивной мощности с быстродействующими системами управления (СТК) и специальные быстродействующие синхронные компенсаторы (ССК).
РсмΣ = 5.85 + 16.4 + 49.6 + 1.8 + 1.8 + 12.2 = 87.7 кВт;
QсмΣ = 4.4 + 20.7 + 64.7 + 3.1 + 3.1 + 4 = 100 кВар;
SсмΣ = = 133 кВ · А;
РмΣ = 5.85 + 26.4 + 76.9 + 1.8 + 1.8 + 12.2 = 124.95 кВт;
QмΣ = 4.4 + 20.7 + 64.7 + 3.1 + 3.1 + 4 = 100кВар;
SмΣ = = 160 кВ ·А;
cosφ = PсмΣ / SсмΣ = 87.7 / 133 = 0.66;
tgφ = QсмΣ / PсмΣ = 1.14.
Исходные данные для выбора компенсирующего устройства приведены в (табл. 2.2.).
Таблица 2.2 Исходные данные
Параметр |
Cosφ |
tgφ |
Pм, кВт |
Qм, квар |
Sм, кВ · А |
Всего на НН без КУ |
0,67 |
1,09 |
191,5 |
144,45 |
239,9 |
Определяем расчетную мощность компенсирующего устройства:
Qкр = α · Рм · (tgφ – tgφк)
α = 0.9; Рм = 124.95 кВт;
Qкр = 0.9 · 124.95 (1.14 – 0.33) = 91.1 кВар;
Применяется cosφк = 0.95, тогда tgφк = 0.33;
Из (7, табл. 31.24) выбирается 5 × КС 0.38 - 18 – ЗУЗ (1УЗ);
Определяется фактическое значение tgφф и cosφф после компенсации реактивной мощности:
Qкст = 5×18; Pм = 124.95;
cosφф = 0.75;
Результаты расчетов заносятся в сводную ведомость нагрузок (табл. 2.3.).
Таблица 2.3. Сводная ведомость нагрузок
Параметр |
cosφ |
tgφ |
Рм, кВт |
Qм, кВар |
Sм, кВ · А |
Всего на НН без КУ |
0.66 |
1.14 |
124.95 |
100 |
160 |
КУ |
5 × 18 | ||||
Всего на НН с КУ |
0.75 |
0.8 |
124.95 |
10 |
125.4 |
Потери |
2.5 |
12.5 |
12.6 | ||
Всего на ВН с КУ |
127.5 |
22.5 |
129.5 |
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода