Тепломассообмен при испарении и горении капель жидких топлив
где , получим формулу для rв в виде
(2.13)
Для случая неподвижной среды и координата “поверхности” воспламенения определяется как
Для капли этилового спирта расчёт по этой формуле даёт rв/rк≈25. Большое расстояние, на котором происходит воспламенение, требует большого времени, чтобы установилось квазистационарное распределение температур и концентраций в газовой фазе. Очевидно, что это время не должно превышать времени полного испарения капли. Поэтому критическое условие воспламенения (2.9) совместно с (2.13) для случая неподвижной среды может использоваться только для грубой оценки.
При Nu > 2,3 критерий воспламенения капли представляется в виде
(2.14)
При этом физический смысл const не расшифровывается.
Полагая,что rк/rв ≈ rк/rпл и используя (2.8), (2.9), (2.10), критическое условие воспламенения капли представим в виде, аналогичном условию зажигания газовой смеси накаленным телом
(2.15)
где
.
2.2 Анализ зависимости критического условия
В отличие от (2.14) в (2.15) содержится информация об испарении. Для жидкости, у которой величина L/cп больше, температура воспламенения должна быть при постоянных других свойствах. Наиболее чувствительна температура воспламенения к энергии активации. Так у ацетона энергия активации больше (Еац/Есп=1.31) а величина L/cп меньше чем у этилового спирта (L/cп)ац/(L/cп)сп = 0.72. В итоге температура воспламенения у ацетона выше, чем у этилового спирта, так как величина L/cп входит под знак логарифма. С увеличением скорости потока температура воспламенения увеличивается , а с ростом радиуса капли уменьшается. Это объясняется тем, что рост скорости потока приводит к увеличению теплоотвода из зоны химической реакции. Увеличение же размеров капли в результате приводит к увеличению мощности тепловыделения. Поэтому воспламенение капли большего диаметра происходит при меньшей температуре газа.
Раздел 3.
гистерезис горения. срыв пламени
3.1. Горение в потоке воздуха.
Горение жидкой поверхности в движущемся воздушном потоке обстоятельно изучалось Сполдингом[2]. Опыты проводились на горелках с рециркуляцией, в которых топливо (в большинстве случаев керосин) омывало поверхность горелки и снова собиралось. Использовались горелки с вертикальной плоской пластинкой и сферические горелки (последние воспроизводили каплю жидкого топлива). Изменение расхода топлива позволяло изменять количество тепла, поглощаемого топливом. Размеры горелок были таковы, что приходилось учитывать влияние естественной конвекции. Сполдинг [2] проводил также опыты по горению на шарике при вынужденной конвекции.
Не приводя окончательного вывода, Сполдинг [2] предлагает следующее уравнение, выраженное через безразмерные параметры, для горения на вертикальной плоской пластинке при ламинарной естественной
конвекции:
(3.1)
где
а — вес кислорода на единицу веса газовой смеси в атмосфере.
Скорость диффузии от плоской пластинки, обтекаемой в продольном направлении ламинарным потоком в условиях вынужденной конвекции, дается выражением
, (3.2)
При Рr = 0,71 функция апроксимируется выражением 0,646 ln(1 + ).
Установлено, что скорость диффузии (скорость горения) может быть определена приближенно по известным данным о теплопередаче из выражения
, (3.3)
где Н — коэффициент теплопередачи, определяемый экспериментальным путем в отсутствие горения или диффузии.
Уравнение (3.3) напоминает уравнение (8а), которое, будучи написано для скорости горения на единицу поверхности, принимает вид
, (3.4)
Член можно заменить коэффициентом, теплопередачи.
Если ввести температуру горения из уравнения (34а), то получим
, (3.5)
так как сррD/х ~ 1 и для воздуха . Таким образом, видна взаимосвязь уравнений (46) и (47).
3.2. Естественная конвекция.
В своих опытах по горению в условиях естественной конвекции Сполдинг применял горелку с плоской пластинкой длиной 63,5 мм и шириной 52,8 мм и сферическую горелку с шариком диаметром 38 мм. При изменении расхода топлива количество поглощаемого жидкостью тепла могло достигать 2220 ккал на 1 кг сжигаемого топлива. Это позволяло изменять Н0 + Нг в значительно больших пределах, чем при горении отдельных капель топлив.
Данные как для плоской, так и для сферической горелки хорошо описываются уравнением (3.1). При горении на сфере в качестве характеристического размера использовался ее диаметр, а при горении на пластинке — ее высота. Сполдинг подтверждает правильность такой методики тем обстоятельством, что данные по теплообмену при естественной конвекции на пластинках, шарах и цилиндрах хорошо коррелируются одной зависимостью, так что то же самое может оказаться справедливым и в случае горения. Большинство опытов было проведено по горению керосина, но уравнение (3.1) дает возможность так же хорошо рассчитать данные для газойля, бензина и тяжелых мазутов. Считается, что уравнения (3.1) и (3.3) можно применять и для расчета скорости горения при естественной конвекции.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода