Определение реакции опор твёрдого тела

Найти: Уравнение движения

Решение:

Применим к решению задачи дифференциальное уравнение движения точки. Совместим начало координатной системы с положением покоя груза, соответствующим статической деформации пружины, при условии что точка В занимает свое среднее положение src="images/referats/13430/image088.png">. Направим ось вниз вдоль наклонной плоскости. Движение груза определяется по следующему дифференциальному уравнению:

,

где -сумма проекций на ось сил, действующих на груз.

Таким образом

Здесь ,

где - статическая деформация пружины под действием груза; -перемещение точки прикрепления нижнего конца пружины, происходящее по закону .

Статическую деформацию пружины найдем из уравнения, соответствующего состоянию покоя груза:

т.е.

Откуда

Дифференциальное уравнение движения груза примет вид:

или после преобразования

Разделив все члены уравнения на получим:

Введем обозначения:

Получаем, что

Имеем неоднородное уравнение

,

где - общее решение, соответствующего однородного уравнения;

- частное решение данного неоднородного уравнения.

Общее решение однородного уравнения имеет вид:

Частное решение неоднородного уравнения:

Общий интеграл

Для определения постоянных интегрирования найдем, кроме ого, уравнение для :

и используем начальные условия задачи.

Рассматриваемое движение начинается в момент , когда деформация пружины является статической деформацией под действием груза.

Таким образом, при

Составим уравнения и для :

Откуда

Тогда уравнение движения груза примет вид:

Ответ:

Применение теоремы об изменении количества движения к исследованию движения механической системы.

Дано:

Найти: Скорость .

Решение:

На механическую систему действуют внешние силы: - сила сухого трения в опоре А; - силы тяжести тел 1, 2 и 3; -сила нормальной реакции в точке А; -реактивный момент в опоре В.

Применим теорему об изменении количества движения механической системы в дифференциальной форме. В проекциях на оси координат

, (1)

где - проекции вектора количества движения системы на оси координат; - суммы проекций внешних сил на соответствующие оси.

Количество движения системы тел 1, 2 и 3

(2)

где

. (3)

Здесь - скорости центров масс тел 1, 2, 3; - соответственно переносные и относительные скорости центров масс.

Очевидно, что

(4)

Проецируя обе части векторного равенства (2) на координатные оси, получаем с учетом (3) и (4)

(5)

где - проекция вектора на ось ;

Проекция главного вектора внешних сил на координатные оси

(6)

Знак « - » соответствует случаю, когда , а знак «+» - случаю, когда .

Страница:  1  2  3  4 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы