Физико-химические закономерности формирования тонкопленочных металлополимерных систем из газовой фазы
Установлено, что температурная зависимость коэффициента конденсации атомов металла на поверхности полимеров носит сложный характер (рис. 2) [10].
|
Рис. 2. Температурная зависи – мо сть коэффициента конденсации атомов свинца на поверхности ПТФЭ (1), ПЭ (2), ПЭТ (3), ПХТФЭ (4) |
В случае металлизации неполярных полимеров при температуре поверхности, соответствующей переходу из стеклообразного состояния в высокоэластическое и из высокоэластического в вязкотекучее, коэффициент конденсации имеет достаточно низкое значение (происходит «срыв» конденсации). На основании данных масс-спектрометрического анализа реиспаренных и десорбированных атомных и молекулярных потоков, а также расчета изменения энтропии вблизи температур релаксационных и фазовых переходов установлено, что существенное влияние на массопереноc оказывает сегментальная подвижность макромолекул [1]. Данный результат полностью согласуется с результатами исследования кинетики осаждения при механическом стекловании неполярных полимеров [1,10].
При вакуумной металлизации полярных полимеров температурная зависимость коэффициента конденсации определяется, в основном, тепловой активацией процессов реиспарения и при Т<Тпл (Тпл – температура плавления полимера) является монотонной. Установленное влияние полярности полимеров на массоперенос при их металлизации объясняется проявлением различной природы центров зародышеобразования металлической фазы [1, 10].
При достаточно высоких температурах поверхности (Т>Тпл), когда реализуется высокая подвижность макромолекул и протекают процессы их термодеструкции, состояние конденсированной фазы в значительно степени определяется массопереносом в объем полимера [18, 19]. При таких режимах металлизации возможно химическое взаимодействие атомов металла с полимером, синтез новых металлоорганических соединений, что представляет существенный практический интерес. Обнаружено также, что при достаточно низкой плотности падающего потока атомов металла из-за их диффузии в объем поверхностная пленка не образуется. При этом атомарное состояние металла для ряда систем является неустойчивым, и в объеме протекают процессы образования кластеров с четко выраженной текстурой. Механизм образования текстуры может быть объяснен особенностями кристаллизации в присутствии адсорбционно-активных сред, ориентирующее действие которых установлено в [20].
Особый интерес представляет изучение особенностей осаждения атомов металла на поверхности структурно-неоднородных полимеров. Показано [21], что у неполярных полимеров области с аморфной структурой в сравнении с областями кристаллической фазы обладают более высокими адсорбционными свойствами. При металлизации полярных полимеров изменение надмолекулярной структуры не оказывает заметное влияния на поверхностное распределение зародышей. Селективный характер зародышеобразования металлической фазы, установленный при осаждении на сферолитные кристаллические образования неполярных полимеров, может быть использован для изучения их тонкой структуры.
В работе [22] показано, что тонкие слои ряда веществ, в том числе и полимеров, способны к передаче структурной информации подложки, на которую они нанесены. Дальнодействующее влияние подложки проявляется при толщинах слоя в несколько мкм. Кинетика осаждения атомов на тонких полимерных слоях также имеет ряд особенностей. Установлено, что материал подложки, на которую нанесен слой полимера, оказывает влияние и на характер температурной зависимости коэффициента конденсации [23]. Так, при осаждении атомов свинца на поверхность полимерного слоя, нанесенного на алюминий, и на поверхность алюминия без слоя характер температурных зависимостей коэффициента конденсации совпадает, хотя при осаждении на поверхность массивного полимера зависимость имеет совершенно иной вид. Определены условия, при которых проявляется указанный эффект передачи адсорбционной активности подложки [1,23].
2. Осаждение тонких полимерных покрытий из активной газовой фазы
Основными, относительно элементарными процессами, имеющими место при осаждении полимерных слоев из активной газовой фазы, являются диспергирование исходного полимера концентрированным потоком энергии (ионов, электронов, электромагнитного излучения), перенос летучих продуктов диспергирования в вакууме и их взаимодействие с поверхностью, приводящее к их адсорбции, образованию центров полимеризации и росту высокомолекулярных частиц [4, 23–25].
Физико-химическое состояние активной газовой фазы, а, соответственно, и процессы взаимодействия ее с поверхностью, свойства образующихся покрытий зависят, прежде всего, от условий и режимов диспергирования полимера, приводящего к образованию летучих продуктов. В технологии полимерных покрытий генерация летучих продуктов возможно различными приемами: при пиролизе (термодеструкции) [25], воздействии на поверхность полимера потока ионов [26], электронов [27], электромагнитного излучения [28]. Специфические процессы, протекающие при реализации данных технологических приемов, определяют значительное различие в кинетике диспергирования, составе образующейся газовой фазы и, в конечном счете, в свойствах формируемых покрытий.
Проблемы аналитического описания массо- и теплопереноса, сопровождающих воздействие концентрированных потоков энергии на различные материалы, достаточно подробно рассмотрены в работах [29, 30]. Отметим, что задача расчета кинетики разрушения мишени ставится и при рассмотрении ионного травления при производстве интегральных схем, лазерной и плазменной резки, плавления и других технологических процессов. Вместе с тем полимерные материалы и процессы, протекающие при воздействии на них потоков энергии, имеют ряд особенностей, что определяет необходимость отдельного их изучения. Из-за сложности и многофакторности данных процессов при построении аналитических моделей важным является определение, прежде всего, механизма разрушения макромолекул, температурных полей в поверхностных слоях мишени. В общем случае процесс диспергирования может быть описан системой взаимосвязанных дифференциальных уравнений, определяющих, соответственно, массо-, зарядо-, и теплоперенос [31]. Решение такой системы уравнений возможно только численными методами. Однако задача может быть значительно упрощена в результате анализа конкретных условий диспергирования. Так, например, степень влияния диффузионных процессов, температурной неоднородности на кинетику образования летучих продуктов может быть определена на основании сопоставления характерных параметров процессов: времени диффузионного переноса ; времени возбуждения макромолекул ; времени релаксации температуры ; среднего времени воздействия частиц потока на молекулы полимера ; длительности интервала между последовательными воздействиями на поверхность частиц потока , где Rп - максимальная глубина проникновения заряженных частиц в полимерную мишень; D – коэффициент диффузии; Vp-скорость диспергирования мишени (м/с); - коэффициент температуропроводности; V0 – скорость движения частиц потока; jп – плотность потока частиц; Sв – сечение взаимодействия молекул полимера с частицей падающего на поверхность потока.