Тест-системы для химического анализа
Для данных кривых было получено критериальное уравнение и рассчитана вероятность степени аппроксимации.
У1 = -12,833x2 + 2,5167x + 0,4 (для диэтилдитиокарбамата меди)
R2 = 1;
У2 = 17,925x3 - 35,143x2 + 21,261x - 3,6928 (для диметилглиоксимата никеля)
R2 = 0,9862.
Из рисунка 8 видно, что более растворимый осадок переходит в более подвижную фазу и содержание его в верхней зоне
уменьшается. Теоретически разделение осадков диэтилдитиокарбамата меди и диметилглиоксимата никеля должно быть успешным, так как граница в их растворимости составляет более 103 и не зависит от концентрации анализируемых ионов.
На рисунке 9 представлено распределение окрашенных зон диэтилдитиокарбамата меди и тиоцианата кобальта.
Рисунок 9 - Распределение зоны осадков от концентрации ионов меди и кобальта в растворе
Для данных кривых было получено критериальное уравнение и рассчитана вероятность степени аппроксимации.
У1 = -4,75x2 + 0,9x + 0,4 (для диэтилдитиокарбамата меди)
R2 = 1;
У1 = -6,958x2 + 7,5251x - 1,5816 (для тиоцианата кобальта)
R2 = 0,9188.
За счёт вторичных явлений при образовании осадков зона диэтилдитиокарбамата меди содержит незначительное количество тиоцианата кобальта. Этого избежать можно промыванием осадков водой, что позволит сделать более чёткой границу окрашенных зон за счёт перераспределения осадков на носителе.
Вышепредставленные данные легли в основу построения тест-системы по обнаружению ионов меди, никеля и кобальта.
Данная тест-система использовалась для определения вышеуказанных ионов тяжелых металлов в почвах экспериментальных полей Ставропольского НИИСХ, расположенных вблизи аэропорта г.Ставрополя; в образцах воды из р. Мутнянка, в которую поступают сточные воды с городских очистных сооружений, а также из природных родников.
Результаты проведенных исследований показали, что содержание тяжелых металлов в исследуемых объектах не превышает ПДК. При этом использование тест-системы позволило сократить время проведения анализа и увеличить диапазон концентраций определяемых ионов металлов. Тест-система не требует существенной пробоподготовки, использования сложных стационарных приборов, лабораторного оборудования и отличается специфичностью, чувствительностью. Определению не мешают в кратных количествах ионы Na, K, Ca, Mg, Ba, Zn, Fe(III), Mn, Cd, Al.
Заключение
Разработанная тест-система представляет собой твёрдофазный носитель на основе силикагеля, на поверхности которого адсорбирован диметилглиоксим. Выбор носителя был обусловлен положительными свойствами твердой фазы. Гранулы, входящие в состав сорбента отличаются однородностью состава, механической прочностью, микробиологической устойчивостью и хорошей проницаемостью. Качественный анализ содержания никеля в объектах внешней среды предоставляет большие возможности химикам-аналитикам и ученым экологам в исследовательской деятельности. Тест-система позволит создать средств анализа недорогие лёгкие с точки зрения использования и в то же время сопоставимые по своим аналитическим характеристикам с современными инструментальными методами.
Разработанная тест-система обладает специфичностью, эспрессностью. При оценке наличия ионов никеля изменение окраски из белой в розовую свидетельствует о присутствии искомых ионов.
Выводы
- Количественно определили содержание ионов никеля в растворах заданной концентрации колориметрическим методом, для получения сопоставимых результатов с применением тест-системы;
- Разработали твердофазную тест систему на основе диметилглиоксима, адсорбированного на поверхности твёрдого носителя, в качестве которого использовали силохром и силикагель, отличающуюся специфичностью, экспрессностью и дешевизной;
- Использовали полученную тест-систему для качественного определения содержания ионов никеля. По изменению окраски носителя из белой в розовую оценивали присутствие искомых ионов.
Список литературы
1. Золотов Ю.А., Иванов В.М., Амелин В.Г. «Химические тест-методы анализа», 2002.
2. Островская В.М., Фомин Н.А. //Высокочистые вешества, 1987,
№ 4, 183.
3. Кушнер М.М., Классовская Н.А., Земский Б.П. АС СССР 1698756. БИ 1989, № 46
4. Process. Eng. (Austral.), 1993, 21, № 8, 20. РЖХим. 1994, 19И284.
5. Балекаев А.Г., Балаян М.А. АС СССР 1797054. БИ 1993, № 7.
6. Морозко С.А., Иванов В.М.// Журн.аналит.химии, 1996, 51, № 6, 631.
7. Иванов В.М., Кузнецова О.В.// Журн.аналит.химии, 1995, 50, № 5, 498.
8. Morosanova E.I., Velikorodnyi A.A., Zolotov Yu.A.//Fresenius' I. Anal.Chem., 1998, 361, 305.
9. Kuselman I., Kuyavskaya B.I., Lev O.// Anal.Chem.Acta, 1992, 256, 65.
10. Kuselman I., Lev O.// Talanta, 1993, 43, 749.
11. Zolotov Yu.A.//Ann.Chem. (Paris), 1997, 87, 285.
12. Моросанова Е.И., Великородный А.А., Золотов Ю.А.// Журн.аналит.химии, 2000, 55, 486.
13. Азарова Ж.М., Моросанова Е.И., Золотов Ю.А.// Журн.аналит.химии, 2000, 55, 714.
14. Амелин В.Г.// Журн.аналит.химии, 2000, 55, № 5, 359.
15. Halamex E., Prikryl F., Sonak J.Czech. S.R. pat. 239708, 1987.
16. Кравченко М.С., Юрченко Л.Н., Аксенова М.С., Островская В.М.// Журн.аналит.химии, 1987, 42, № 2, 263.
17. Siepak J., Witkowski H.//Chem.anal.,1987, 32, № 4, 1035.
18. Иванов В.М., Сабри Массуд// Журн.аналит.химии, 1995, 50, № 12, 1280.
19. Katsuyata H. (Jap). Пат. США 5186894, 1993.
20. -53Дмитриенко С.Г.
21.-54