Равновесия в неводных растворах

В растворителях с высокими диэлектрическими проницаемо­стями электролитическая диссоциация может протекать полностью и равновесная концентрация ионизованного комплекса будет пре­небрежимо мала. Однако это не означает, что электролитный рас­твор мог образоваться, минуя стадию ионизации. Развитие методов изучения быстрых реакций показывает, что даже в растворителях с весьма высокими диэлектрическ

ими проницаемостями (вода, сер­ная кислота) возникновению свободных ионов неизбежно предше­ствует стадия ионизации.

4. Электролитическая диссоциация.

Ионизация сольвата является необходимым, но еще не обя­зательным условием образования электролитного раствора. Обя­зательным же условием диссоциации ионизированного комплекса на ионы является достаточно высокая диэлектрическая проницае­мость раствора. Лишь в этом случае ионизованный комплекс рас­падается на ионы:

Несмотря на то, что полная ионизация протекает достаточно часто, полная электролитическая диссоциация (сильные электро­литы) наблюдается значительно реже. Абсолютно подавляющее большинство изученных электролитных неводных растворов обра­зовано слабыми электролитами, реже — электролитами средней силы.

Основные методы определения константы электролитической диссоциации обычно сводятся к кондукто- либо потенциометрическим методикам и приложимы лишь к весьма разбавленным растворам. Другие методы определения констант диссо­циации (например, спектрофотометрические) имеют ограниченное применение.

Современный арсенал методов исследования растворов позво­ляет почти всегда уверенно определять число стадий для каждого конкретного объекта.

ВЛИЯНИЕ РАСТВОРИТЕЛЯ НА РАВНОВЕСИЕ В ХИМИЧЕСКИХ СИСТЕМАХ

Проблема влияния растворителя на равновесие процессов, про­текающих в химических системах, сводится в первую очередь к рассмотрению двух вопросов — как изменяется равновесие процесса при переходе из газовой фазы в данный растворитель и от; одного растворителя к другому.

Влияние физических свойств растворителя на константы равно­весия процессов в химических системах может быть объяснено с электростатических позиций, если учесть, что в значительном числе случаев в первом приближении химические процессы сводятся к электростатическому взаимодействию, константа равновесия которого описывается уравнением Борна:

Из уравнения следует, что из физических свойств рас­творителя, определяющих константу равновесия, основным явля­ется диэлектрическая проницаемость. Действительно, почти во всех случаях можно установить весьма простую корреляцию между константами равновесий раз­нообразных процессов и диэлектрической проницаемостью.

Влияние диэлектрической проницаемости на равновесие в хи­мических системах может быть установлено и в случае взаимодей­ствия двух диполей.

1. Влияние растворителя на молекулярные ассоциативно-диссоциативные процессы

Во многих случаях молекулярная диссоциация ассоциированных компонентов, образующих жидкий раствор, обусловлена химическим взаимодействием между ними.

Табл.1. Константы равновесия и теплоты процесса (в кДж/моль) диссоциации димеров уксусной кислоты в различных растворителях

В табл.1 приведены значения констант равновесия про цесса распада димеров уксусной кислоты B паре и различных растворителях. Несмотря на то, что таблица состав­лена по данным различных авторов и данные эти относятся к до­вольно широкому интервалу температур, можно установить чет­кую корреляцию между ассоциированным состоянием уксусной кислоты и химическими свойствами растворителя. В паре молеку­лы уксусной кислоты практически полностью являются димерными. Во всех растворителях уксусная кислота находится в виде равновесной смеси димерных и мономерных молекул. Нетрудно заметить, что на положение равновесия диэлек­трическая проницаемость оказывает гораздо меньшее влияние, чем химические свойства растворителей. Так, в растворителях, характеризующихся весьма близкими значениями ε — гексане,

сероуглероде, четыреххлористом углероде, бензоле и диок­сане, величины Кмон разли­чается весьма существенно. В химически инертных по отношению к уксусной кислоте растворителях равновесие практически смещено в сторо­ну димера. Величина Кмон в бензоле приблизительно на по­рядок выше, чем в остальных инертных растворителях, что обусловлено взаимодействием (впрочем, довольно слабым) кислоты с бензолом по π-связям последнего. В диоксане же, который является растворителем с отчетливо выраженными основными свойствами, равновесие уже значительно смещено в сторону мономера.

Химические свойства растворенного вещества также в значи­тельной степени определяют его ассоциативное состояние. Так, ве­личины Кмон растворов уксусной, монохлоруксусной и трихлоруксусной кислот в диоксане, рассчитанные по криоскопическим данным состав­ляют 0,8; 24 и ∞, т. е. увеличиваются по мере увеличения степени взаимодействия кислот с растворителем.

Причиной, обусловливающей распад ассоциированных молекул многих веществ, ншшстся в большинстве случаев образование Н-связи между компонентами раствора. Как известно, мерой проч­ности Н-связи (а, соответственно, и степени распада ассоциатов) является сдвиг максимума полосы поглощения, относящейся к группировке, которая участвует в образовании Н-связи. Спектро­скопическая литература изобилует примерами, иллюстрирующими эту закономерность.

Влияние растворителя на ассоциативное состояние растворен­ного вещества связано прежде всего с ε. Это влияние отчетливо сказы­вается лишь в тех растворителях, энергией взаимодействия кото­рых с растворенным веществом можно пренебречь по сравнению с энергией связи молекул в ассоциате. Можно установить влияние растворителя и на константу рав­новесия конформационных превращений молекул в растворах. Поскольку последние сопряжены с изменением дипольного мо­мента, молекулы, следует ожидать влияния ε на константу равновесия этого процесса.

В литературе имеются весьма скудные данные по влиянию растворителя на константу равновесия процессов образования продуктов присоединения . Исследования в этом направлении охватывают ограниченный круг растворителей в небольшом интер­вале диэлектрических проницаемостей; кроме того, не всегда удается разграничить влияние физических и химических факторов.

2. Влияние растворителя на константы устойчивости комплексных соединений

Рассмотрим вопросы, связанные с изменением константы рав­новесия (константы устойчивости) Кк процессов комплексообразо­вания, т. е. процессов присоединения к иону металла иона (в част­ном случае нейтральной молекулы) лиганда

при переходе от одного растворителя к другому, либо с измене­нием состава смешанного растворителя.

Страница:  1  2  3  4 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы