Прикладная фотохимия
Природа этого феномена ещё не ясна. Есть предположение, что отделение углеродного слоя связано π-плазмонным резонансом, вызванным фотонами с длиной волны 248 нм. Другая гипотеза объясняет это явление окислением углерода озоном, формирующимся под действием излучения эксимерного лазера. Для прояснения механизма планируется провести ряд дополнительных экспериментов, в том числе в бескислородн
ой среде.
Лазерная нанохирургия
Одной из перспектив применения нанотехнологий является нанохирургия – операции над отдельными клетками. Создание подобной технологии произведёт настоящую революцию в медицине, однако разработанные к настоящему моменту методики микроинъекций в отдельные клетки либо недостаточно эффективны, либо не обеспечивают дальнейшую жизнеспособность инъецированной клетки. Пробиться сквозь защитный слой живой клетки млекопитающего, не умертвив ее при этом, оказалось невероятно сложно.
Учеными Ренсслеровского Политехнического института (Rensselaer Polytechnic Institute, NY) был предложен новый метод пункции клеток. Они использовали тонкий луч лазера в ближней ИК-области спектра, пульсирующий с частотой 1 фемтосекунду, для создания поры – отверстия в клеточной мембране. Луч служил в качестве своеобразной иглы, протыкающей стенку клетки и таким образом заставляющей ее впитывать окружающий материал. Для подтверждения успешных инъекций ученые помечали вводимое вещество йодным красителем, что позволяло наглядно видеть результаты инъекций в микроскоп.
Дальнейшие исследования показали, что размер пор и, соответственно, количество впитываемого клеткой материала, напрямую зависит от интенсивности излучения лазера. Ученые также определили пределы максимально допустимой интенсивности излучения, при которой выживают клетки, и минимально требуемой для того, чтобы клетка начала вбирать в себя вещество. Это позволит в дальнейшем точно дозировать количество молекул веществ, вводимых в клетку.
Фотокатализ в очистке воды и воздуха
Фотокатализ - изменение скорости или возбуждение химических реакций под действием света в присутствии веществ (фотокатализаторов), которые поглощают кванты света и участвуют в химических превращениях участников реакции, многократно вступая с ними в промежуточные взаимодействия и регенерируя свой химический состав после каждого цикла таких взаимодействий. В процессах очистки воды и воздуха от органических примесей в качестве фотокатализатора используют исключительно ТiO2.
ТiO2 - полупроводниковое соединение. Электроны в полупроводниках могут находиться в двух состояниях: свободном и связанном. В первом состоянии электроны движутся по кристаллической решетке, образованной катионами Тi4+ и анионами кислорода О2-. В основном состоянии электроны связаны с каким-либо ионом кристаллической решетки и участвуют в образовании химической связи. Для перевода электрона из связанного состояния в свободное необходимо затратить энергию не менее 3,2 эВ. Эта энергия может быть доставлена квантами света с длиной волны < 390 нм. Таким образом, при поглощении света в объеме частицы ТiO2 рождаются свободный электрон и электронная вакансия (дырка). Электрон и дырка — достаточно подвижные образования, и, двигаясь в частице полупроводника, часть из них рекомбинирует, а часть выходит на поверхность и захватывается ею. Захваченные поверхностью электрон и дырка являются вполне конкретными химическими частицами. Например, электрон — это, вероятно, Тi3+ на поверхности, а дырка локализуется на решетчатом поверхностном кислороде, образуя О-. Эти частицы чрезвычайно реакционноспособны: потенциал электрона
~ -0,1 В, потенциал дырки ~ + 3 В относительно нормального водородного электрода. Таким образом, электрон может реагировать с кислородом:
При этом образуются такие мощные окислители, как OH- и О-радикалы. В водных растворах или при низких концентрациях кислорода электрон может реагировать с молекулой Н2О, образуя гидроксид-ион и радикал Н.
Дырка реагирует либо с водой
h + H2O OH + H+
либо с любым адсорбированным органическим (в некоторых случаях и неорганическим) соединением:
ОН-радикал или О- также способны окислить любое органическое соединение. Таким образом, поверхность ТiO2 под светом становится сильнейшим окислителем.
Очистка воздуха от органических примесей
К настоящему моменту уже показано, что на поверхности ТiO2 могут быть окислены (минерализованы) до СО2 и Н2О практически любые органические соединения. Если в состав соединений входят азот или атомы галогена X, то в продуктах реакции будут наблюдаться HNO3 и НХ. Единственным известным примером соединения, которое не подвергается на поверхности ТiO2 окислению под действием света, является тетрахлорметан, но уже трихлорэтилен разрушается на ТiO2 под действием света с квантовым выходом, превышающим единицу. Это связано с тем, что на поверхности ТiO2 может образовываться атомарный С, который, десорбируясь с поверхности, стимулирует цепной процесс разложения исходного трихлорэтилена.
На практике любой фотокаталитический очиститель воздуха включает в себя пористый носитель с нанесенным ТiO2, который облучается светом и через который продувается воздух. Так, на рисунке показано устройство бытового фотокаталитического очистителя воздуха, разработанного Информационно-технологическим институтом (Москва) и Институтом катализа Сибирского отделения РАН.
Фотокаталитический очиститель воздуха
Органические молекулы из потока адсорбируются на поверхности фотокатализатора, нанесенного на пористое стекло (фотокаталитический фильтр), и окисляются до углекислого газа и воды под действием света от УФ-лампы.
Использование фотокатализа для очистки воды от органических примесей
Так же, как и в воздухе, в воде органические примеси, попав на поверхность частицы ТiO2, могут быть окислены до СО2 и Н2О. К настоящему времени показано, что в облучаемых суспензиях ТiO2 этому процессу подвержены практически любые органические соединения. Однако, как правило, характерные времена полного окисления составляют несколько часов, что частично связано с существенно более медленной диффузией органических молекул в воде, нежели в воздухе. Типичный ко-ффициент диффузии в воде составляет около 10-5 см2/с, что по крайней мере на четыре порядка меньше, чем в воздухе при нормальных условиях. По этой причине проточные реакторы с нанесенным ТiO2 малоэффективны. Использование суспензии ТiO2 технологически считается не совсем удобным, так как требует последующего удаления ТiO2 из потока. В принципе эти проблемы решаются, однако до сих пор не известны примеры практического использования проточных фотокаталитических реакторов с гетерогенным катализатором из ТiO2.