Постулаты квантовой механики
(2.5)
и, соответственно, его проекции равны
(2.6)
(2.7)
(2.8
- кинетическая энергия Т, скалярная вели
чина, которая в поступательном движении связана и с массой и импульсом
;
для одномерного вращения вокруг оси (например, z) справедлива подобная же формула, где масса заменена моментом инерции Iz, а импульс – его моментом :
- потенциальная энергия, т.е. скалярное силовое поле, задаваемое функци-ей координат , в котором движется частица;
- полная энергия Е, равная сумме кинетической и потенциальной энергий
2.2.3. С учетом общих требований, предъявляемых к операторам квинтовой механики, постулируются простейшие операторы, а именно: операторы координат, определяющие положение частицы, и импульса ее,
- оператор координаты совпадает с умножением на саму координату q, т.е.: , или угол,
или, в общем виде ;
- оператор импульса имеет дифференциальную форму
(2.9)
где постоянная Планка Дж·с, и операторы координат импульса соответственно равны:
, , (2.10)
Введение в оператор, мнимой единицы превращает его в самосопряженный т.е. отвечающий условию (1.5).
2.2.4. Остальные операторы строятся по формулам классической механики, где вместо координат и импульсов используются их операторы, Это утверждение можно считать следствием макроскопического устройства приборов по законам классической физики. Построим операторы и для одной частицы:
- операторы момента импульса и его проекций:
, (2.11)
, (2.12)
, (2.13)
(2.14)
В полярных координатах (например, сферических) соответствующие производные декартовых координат следует заменить их выражениями через полярные переменные;
- оператор кинетической энергии в декартовых координатах:
(2.15)
Переходя к полярным координатам, лапласиан преобразуют к ним. Для случая вращения по поверхности без радиальной компоненты движения, как это имеет место при вращении двухатомной молекулы вокруг центра масс, можно записать:
(2.16)
оператор потенциальной энергии, подобно координате, дается просто умножением на функцию потенциальной энергии, т.е.
, или (2.17)
оператор полной энергии называют гамильтонианом, в честь английского ученого Гамильтона, оставившего фундаментальные труды в механике, астрономии и математике, и обозначают его
(2.18)
2.3. Постулат 3. Уравнение Шрёдингера
2.3.1. Эволюция системы определяется, с одной стороны, ее мгновенным состоянием и, следовательно, волновой функцией. С другой стороны, изменение состояния во времени зависит от "скорости" эволюции, т.е. от производной волновой функции по времени. Вместе с тем такое изменение связано с каким-либо взаимодействием с окружающими систему объектами и, следовательно, с обменом энергией. Это означает, что при описании эволюции необходимо связать саму волновую функцию, ее производную по времени и гамильтониан, в общем случае зависящий от координат и времени.
2.3.2. Такая связь вводится в виде временнớго уравнения Шрёдингера, которое является одним из постулатов квантовой механики и записывается в форме:
(2.19)
Возможные функции состояния системы удовлетворяют уравнению (2.19)
2.3.3. В том случае, когда гамильтониан Н, а, следовательно, и энергия системы не зависят от времени, временное уравнение Шредингера легко преобразуется в стационарное уравнение Шредингера, имеющее структуру операторного уравнения (1.1).
Произведем соответствующие преобразования. Для этого положим, что гамильтониан не включает времени в явном виде и зависит только от координат
(2.20.)
Это позволяет нам использовать метод Фурье для разделения переменных и представить волновую функцию в виде двух сомножителей, одного покоординатного и другого временного:
(2.21)
Подставим результат в (2.20) и перенесем влево от , а влево от оператора дифференцирования по времени, так как по отношению к этим операторам выносимые множители условно постоянны и не преобразуются:
,
(2.22)
Теперь разделим переменные в уравнении (2.22)
(2.23)
Другие рефераты на тему «Химия»:
- Теплоты сорбции акрилонитрила в капроновые
- 136 Валидационная оценка методики анализа лекарственной формы состава - натрия хлорида 0,5; натрия ацетата 0,2; воды очищенной до 1 л
- Основы биохимии белков и аминокислот в организме человека
- Производство глутаминовой кислоты
- Самораспространяющийся высокотемпературный синтез