Научные основы технологии и оборудования гранулирования активных масс и формования положительных электродов литиевых источников тока
ОАО «Источники тока» г. Смоленск. «Электроды,» изготовленные по предложенным технологиям, прошли испытания НЛП «Квант», ОАО «Литий-элемент» и НКТБХИТ (г. Новочеркасск).
Публикации.
Теоретические положения диссертации, результаты исследований и разработок изложены в 88 работах, том числе в 2 монографиях, 48 печатных работах.
Структура работы
Диссертация состоит из введени
я, пяти глав, заключения, списка литературы и приложения. Общий объем диссертации 427 страницы машинописного текста, содержит 141 рисунок и 43 таблицы. Список литературы включает 528 наименований.
Список использованных в автореферате сокращений: AM - активная масса, УАМ, ДМАМ и ОМАМ - соответственно, активная масса угольных, диоксидномарганцевых и оксидномедных электродов; УЭЛ, ДМЭЛ и ОМЭЛ - соответственно, угольная, диоксидномарганцевая и оксидномедная электродная лента; УЭ, ДМЭ и ОМЭ - угольный, диоксидномарганцевый и оксидномедный электрод.
Содержание работы
Во введении обоснованы актуальность, сформулированы цель и задачи исследований, изложены основные положения, выносимые на защиту, выделены научная новизна и практическая значимость полученных результатов, отмечена техническая новизна работы, описаны структура диссертации, апробация и внедрение результатов работы.
В первой главе проведен анализ состояния разработок ЛИТ, технологии и оборудования для изготовления положительных электродов, а также технологии и оборудования для изготовления лент и листов из металлических порошков, ленточных и рулонных композиционных материалов в машиностроении, химической и резино-технической промышленности. Предложены классификации, отражающие конструкцию ЛИТ и конструкцию их электродов, позволяющие проводить ориентированный выбор способов их изготовления, а также классификации способов и устройств для изготовления электродов. Показано, что в большей части конструкций ЛИТ используются тонкие электроды в виде лент, пластин и дисков. Часто изготовлению пластин и дисков предшествует изготовление электродных лент. Пластины получают резкой полученных лент на карточки, а дисковые электроды - вырубкой из лент. Проанализированы составы активных масс положительных электродов. Активные массы УЭ ЛИТ с жидкими деполяризаторами содержат пористый углеродный материал, чаще различные сажи, реже их смеси с графитом или графит.
Содержание связующего в УАМ обычно колеблется в пределах 5 . 20%. Активные массы электродов с твердыми деполяризаторами в большинстве случаев состоят из порошка активного материала, токопроводящей добавки (чаще углеродного материала) в количестве 8 .10% и связующего в количестве 5 .10%. В качестве связующего в основном используют фторопласты, которые вводят в виде суспензий или порошков. Выбор фторопластов связан с их высокой стойкостью в электролитах, однако, массы с фторопластовым связующим значительно сложнее перерабатывать, чем массы с термопластичными или водорастворимыми связующими.
Сформулированы требования к положительным электродам в виде тонких лент, пластин и дисков. Показано, что, наряду с заданной плотностью, пористостью и достаточно высокой электропроводностью, ленточные положительные электроды рулонных ЛИТ должны обладать высокой механической прочностью в сочетании с гибкостью и эластичностью.
Проведен аналитический обзор технологий изготовления положительных электродов химических источников тока (ХИТ), а также аналогичных композиционных ленточных и рулонных материалов, сделан обзор соответствующего оборудования. Предложены классификации способов и устройств для изготовления электродов, описаны их достоинства, недостатки и даны рекомендации по применению. Показано, что формование прокаткой - наиболее предпочтительный способ изготовления электродных лент толщиной более 0,3 .0,4 мм. Прокатка высокопроизводительна, позволяет легко регулировать толщину получаемых электродов, не требует дорогостоящих прессформ и матриц. Предпочтительным вариантом этого способа является формование лент активной массы (AM) с последующей накаткой их на токоотвод. Такой вариант исключает брак электродов, связанный с выходом сетки токоотвода на поверхность электрода, неравномерностью распределения массы относительно токоотвода, большой деформацией и разрывами токоотвода в процессе формования. Показано положительное влияние гранулирования активных масс на технологические свойства AM. Проведен анализ способов гранулирования материалов и оборудования для их реализации. Сформулированы требования к оборудованию для производства положительных электродов ЛИТ.
Анализ современного состояния производства ЛИТ показал, что эффективность используемых технологий и оборудования мала. Внедряются технологии, рассчитанные на единичное производство с большой долей ручного труда. Реальное повышение эффективности производства ЛИТ сдерживается отсутствием исследований и разработок промышленно пригодных технологий, в основе которых лежат непрерывные технологические процессы. Не оптимизированы режимы технологических процессов и параметры используемого оборудования. В первую очередь, это относится к технологии изготовления положительных электродов ЛИТ, в том числе угольных, диоксидномарганцевых и оксидномедных электродов (УЭ, ДМЭ и ОМЭ). Уделяя достаточное внимание изучению свойств AM и поведению электродов в источнике тока, исследователи мало обращают внимание или вовсе не рассматривают вопросы влияния параметров технологических процессов и оборудования на эксплуатационные характеристики электродов. Не рассматриваются вопросы воспроизводимости характеристик электродов. Без решения этих проблем невозможно наладить эффективное производство. В связи с этим сформулированы задачи исследования, решение которых необходимо для достижения поставленной в диссертации цели.
Во второй главе описаны результаты комплексных исследований процессов сушки и гранулирования угольной, диоксидномарганцевой и оксидномедной активных масс (УАМ, ДМАМ и ОМАМ).
Сухая УАМ содержала технический углерод (чаще сажу ПМЭ-ЮОВ) и фторопластовое связующее - суспензию Ф-4Д в количестве 8 .10% (по сухому веществу). ДМАМ содержала: порошок MnO (84 .85%), технический углерод (9 .10%) и Ф-4Д (5 .6%). Состав ОМАМ: технический углерод (5 .10%), Ф-4Д (5 .10%), порошок СиО (85 .87%).
После смешения компонентов AM представляет собой пасту высокой влажности. Поэтому при получении гранул AM неизбежна операция обезвоживания. Сушка на поддонах и в промышленных сушилках конвейерного типа неэффективна. Сушилки с высокой скоростью теплоносителя, например, распылительные сушилки, сушилки с кипящим слоем и с наклонными перфорированными полками обладают высокой производительностью, но одновременно измельчают AM до размеров частиц менее 1 .3 мм. Измельченная AM склонна к пылению, слеживанию, зависанию в бункерах подачи, высоки потери массы. Кроме этого, установлено, что переработка AM, сопровождающаяся измельчением или значительными сдвиговыми деформациями, приводит к разрушению трехмерной структуры, формирующейся в процессе влажного смешения компонентов, разрывам связи между частицами. Это значительно снижает обезвоживания и гранулирования рассматриваются как единое целое: каждая из параллельных (совмещенных) или последовательных операций одновременно должны обеспечивать на всех стадиях обезвоживание AM и формирование гранул с заданными формой, размерами, структурными и физико-механическими характеристиками при максимальной эффективности совмещенного процесса; обезвоживание, как лимитирующая операция совмещенного процесса разделяется на ряд последовательных операций, в которых используются разные способы и устройства; условиями перехода от одного способа обезвоживания к другому являются удаление заданного количества влаги и достижение заданной прочности гранул; сушка осуществляется при переменном температурном режиме, причем, температура и время каждой ступени определяются электрическими и механическими характеристиками электродов; комбинация устройств обезвоживания и гранулирования, а также размеры их рабочих зон, должны полностью соответствовать порядку и продолжительности стадий обезвоживания.
Другие рефераты на тему «Химия»:
- Мутации структуры белковоподобного сополимера. Компьютерное моделирование
- Периодическая система элементов. Периоды, группы, подгруппы. Периодический закон и его обоснование
- Гидролиз солей. Особенности почвенного гидролиза
- Соединения, изолируемые перегонкой с водяным паром - кетоны - ацетон
- Влияние температуры на скорость химической реакции