Медь и её природные соединения, синтез малахита

Другой возможный способ – гидротермальный синтез, т.е. получение кристаллических неорганических соединений в условиях, моделирующих процессы образования минералов в земных недрах. Он основан на способности воды растворять при высоких температурах (до 500° С) и давлениях до 3000 атм. вещества, которые в обычных условиях практически нерастворимы – оксиды, силикаты, сульфиды. Ежегодно этим способо

м получают сотни тонн рубинов и сапфиров, с успехом синтезируют кварц и его разновидности, например, аметист. Именно этим способом был получен малахит, почти не отличающийся от природного. При этом кристаллизацию ведут в более мягких условиях – из слабощелочных растворов при температуре около 180° С и атмосферном давлении. [6]

Сложность получения малахита состояла в том, что для этого минерала главное – не химическая чистота и прозрачность, важная для таких камней как алмаз или изумруд, а его цветовые оттенки и текстура – неповторимый рисунок на поверхности отполированного образца. Эти свойства камня определяются размером, формой, и взаимной ориентацией отдельных кристалликов, из которых он состоит. Одна малахитовая «почка» образована серией концентрических слоев разной толщины – от долей миллиметра до 1,5 см разных оттенков зеленого цвета. Каждый слой состоит из множества радиальных волокон («иголочек»), плотно прилегающих друг к другу и подчас неразличимых простым глазом. От толщины волокон зависит интенсивность цвета. Например, тонкокристаллический малахит заметно светлее крупнокристаллического, поэтому внешний вид малахита, как природного, так и искусственного, зависит от скорости зарождения новых центров кристаллизации в процессе его образования. Регулировать такие процессы очень трудно; именно поэтому этот минерал долго не поддавался синтезу.

Получить искусственный малахит, не уступающий природному, удалось трем группам российских исследователей – в Научно-исследовательском институте синтеза минерального сырья (город Александров Владимирской области), в Институте экспериментальной минералогии Российской Академии наук (Черноголовка Московской области) и в Петербургском государственном университете. Соответственно было разработано несколько методов синтеза малахита, позволяющих получить в искусственных условиях практически все текстурные разновидности, характерные для природного камня – полосчатые, плисовые, почковидные. Отличить искусственный малахит от природного можно было разве что методами химического анализа: в искусственном малахите не было примесей цинка, железа, кальция, фосфора, характерных для природного камня. Разработка методов искусственного получения малахита считается одним из наиболее существенных достижений в области синтеза природных аналогов драгоценных и поделочных камней. Так, в музее упомянутого института в Александрове стоит большая ваза, изготовленная из синтезированного здесь же малахита. В институте научились не просто синтезировать малахит, но даже программировать его рисунок: атласный, бирюзовый, звездчатый, плисовый . По всем своим свойствам синтетический малахит способен заменить природный камень в ювелирном и камнерезном деле. Его можно использовать для облицовки архитектурных деталей как внутри, так и снаружи зданий.

Искусственный малахит с красивым тонкослоистым рисунком производится также в Канаде, в ряде других стран.

Природные соединения меди.

Медь входит в состав более чем в 198 минералов, из которых для промышленности важны только 17,преимущественно сульфидов, фосфатов, силикатов, карбонатов, сульфатов. Главными рудными минералами являются халькопирит

CuFeS ,ковеллин CuS,борнит CuFeS, халькозин CuS.

Окислы: тенорит ,куприт

Карбонаты: малахит, азурит

Сульфаты: халькантит, брошантит

Сульфиды: ковеллин, халькозин, халькопирит, борнит

Чистая медь - тягучий, вязкий металл красного, в изломе розового

цвета, в очень тонких слоях на просвет медь выглядит зеленовато голубой. Эти же цвета, характерны и для многих соединений меди, как в твердом состоянии, так и в растворах.

Карбонаты характеризуются синим и зеленым цветом при условии содержания воды, чем намечается интересный практический признак для поисков.

Практическое значение имеют: самородная медь, сульфиды, сульфосоли, и карбонаты(силикаты).

С.С.Смирнов так характеризует парагенетические ряды меди:

при окислении сульфид - куприт + лимонит (кирпичная медная руда)

- мелаконит (смоляная медная руда) - малахит + хризоколла.

Соединения Меди (1):

Сульфид меди – Cu2S в природе встречается в виде ромбических кристаллов медного блеска; удельный вес его 5,785, температура плавления 1130 0С. Из расплава Cu2S затвердевает в кубических кристаллах. Cu2S достаточно хорошо проводит электрический ток, однако хуже, чем сульфид меди (2)

Окись меди (I) Cu2O встречается в природе в виде минерала куприта – плотной массы цвета от красного до черно – коричневого; иногда она имеет кристаллы правильной кубической формы. При взаимодействии сильных щелочей с солями меди(I) выпадает желтый осадок, переходящий при нагревании в осадок красного цвета, по-видимому, Cu2O. Гидроксид меди(I) обладает слабыми основными свойствами, он несколько растворим в концентрированных растворах щелочей. Искусственно Cu2O получают добавлением натриевой щелочи и не слишком сильного восстановителя, например виноградного сахара, гидразина или гидроксиламина, к раствору сульфита меди (2) или к фелинговой жидкости. [7]

В воде окись меди (I) практически нерастворима. Она однако, легко растворяется в водном растворе аммиака и в концентрированных растворах галогеноводородных кислот с образованием бесцветных комплексных соединений [Cu(NH3)2]OH и соответственно H[CuX2] (где Х – галоген).

В растворах щелочей окись меди (I) заметно растворима. Под действием разбавленных галогеноводородных кислот окись меди (I), превращается в галогенид меди (I), также не растворимый в воде. В разбавленной кислородной кислоте, например серной, окись меди (I) растворяется, однако при этом распадается на соль меди (II) и металл: Cu2O + H2SO4 = CuSO4 + H2O + Cu.

Также в природе встречаются такие соединения Меди (I) как: Cu2О, в природе называемый берцелианитом (Умангит). Который искуствено получают взаимодействием паров Se или H2Se с Cu или её солями при высоких температурах.

Соединения Меди (II)

Окись меди (II) CuO встречается в природе в виде черного землистого продукта выветривания медных руд (мелаконит). В лаве Везувия она найдена закристаллизованной в виде черных триклинных табличек (тенорит). Искусственно окись меди получают нагреванием меди в виде стружек или проволоки на воздухе при температуре красного каления или прокаливанием нитрата или карбоната. Полученная таким путём окись меди аморфна и обладает ярко выраженной способностью адсорбировать газы.

Также встречаются соединения: дигидроксокарбонат меди (горная зелень) Cu2(OH)2CO3 тёмно-зелёные кристаллы. Образуется в зоне окисления медных месторождений. [7]

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы