Исследование механизма синергического действия смесей цинковых солей органических кислот и полиолов при термическом распаде поливинилхлорида (ПВХ)

Термический распад ПВХ является последовательной ионно-молекулярной реакцией, осложненной каталитическим влиянием НС1 [1]. Для замедления скорости термораспада полимера необходимо связывать НС1 и понижать скорость последовательной реакции путем взаимодействия различных соединений с сопряженными двойными связями или путем обмена подвижных атомов хлора, находящихся в положении к двойным связям,

на группы, более прочно связанные с полимерной цепочкой.

В работах [2] установлено, что стабилизирующая функция ряда соединений при термораспаде ПВХ, в том числе солей цинка органических кислот, связана с реакцией обмена между хлораллильными фрагментами и стабилизатором. Соли цинка не используются сами по себе в качестве стабилизаторов, так как время их действия очень мало. В практике стабилизации ПВХ их применяют часто с полиолами. Механизм действия этих смесей при термораспаде ПВХ неизвестен.

В работе [3] при изучении термораспада ПВХ в растворе ди-(2-этил-гексил) фталата в токе азота с добавками лаурата цинка показано, что пентаэритрит, маннит, сорбит заметно увеличивают индукционный период до начала выделения НС1 в свободном состоянии, скорость дегидрохлори-рования после индукционного периода не изменяется. Высказано предположение, что полиолы образуют комплексы с хлоридом цинка, предотвращая его каталитическое влияние на термораспад ПВХ. Однако при введении в ПВХ хлорида цинка и полиолов авторы работы [3] не наблюдали синергического эффекта.

В данной работе изучены кинетические закономерности реакции термического дегидрохлорирования ПВХ, сшивки макромолекул, электронные спектры поглощения образцов полимера при термораспаде ПВХ в присутствии добавок цинковых солей различных органических кислот, полиолов и их бинарных смесей.

В работе использовали ПВХ, полученный суспензионной полимеризацией винилхлорида в присутствии дициклогексилпероксидикарбоната (0,1%) в качестве инициатора, эмульгатор — метилцеллюлоза (0,035%), отношение мономер: вода=1 : 2, температура полимеризации 309 К.

Рис. 1. Дегидрохлорирование ПВХ при 453 К в вакуумированных ампулах ~10-г Па с добавками (моль/кг ПВХ) смесей солей цинка с полиолами (о) или полиолов (<5). а: 1- 0,11, II; 2 - 0,11+0,14 ТЭГ; 3 - без добавки; 4 - 0,11+0,56 ТЭГ; 5 - 0,1 1+1,4 ТЭГ; 6 — ОД 1+0,7 ПЭГ; 7 - 0,11+1,12 ДЭГ; 8' — 0,11+0,15 пентаэритрита; 8" — 0,1 Н+0,93 ЭГ; 9' - 0,1 1+0,93 ЭГ; 9" - 0,1 Ш+0,15 пентаэритрита; 10 - 0,1 1+0,31 глицерина; 11 - без добавки в вакууме ~10-2 Па при постоянном вымораживании летучих продуктов; б: 1 - 0,2 ПЭГ; 2' - 0,15 ТЭГ; 2" - 0,28 ДЭГ; 3 - 0,47 ЭГ; 4' - 0,2 маннита; 4" - 0,2 СТО. 4"' - 0,25 БГ; 4"" — без добавки; 5' - 0,22 глицерина; 5" — 0,2 пентаэритрита

На рис. 1, а представлены кинетические кривые дегидрохлорирования ПВХ в присутствии солей цинка и смесей их с полиолами. При введении в полимер соли цинка скорость образования ионного хлора резко возрастает (кривая 1). Как было показано ранее [8], спирты увеличивают скорость дегидрохлорирования ПВХ. Из рис. 1, б видно, что полиолы или увеличивают (ЭГ, ДЭГ, ТЭГ, ПЭГ), или не влияют (БГ, маннит, GTC) на скорость распада полимера, лишь глицерин и пентаэритрит несколько замедляют ее.

Полиолы и спирты значительно понижают скорость дегидрохлорировавия полимера в присутствии солей цинка в течение периода Т (период Г-время от начала распада до резкого увеличения скорости дегидрохлорирования ПВХ в присутствии стабилизатора). В течение периода Т НС1 в свободном состоянии не обнаружен. При увеличении концентрации полиола в смеси соль цинка — полиол наблюдали большее понижение скорости дегидрохлорирования (рис. 1,а, кривые 2,4,5). При введении в ПВХ смеси соли цинка с пентаэритритом, глицерином или ЭГ скорость дегидрохлорирования совпадает со скоростью термораспада полимера в вакууме при постоянном удалении НС1 (кривые 8—10).

Рис. 2. Образование нерастворимой фракции (н.ф.) при термораспаде ПВХ при 453 К в вакуумированных до ~10-2 Па ампулах в присутствии смесей солей цинка с полиолами (моль/кг ПВХ): Г -0,11; 1" - 0,1 II; 2' - 0,28 ДЭГ; 2" — 0,56 ТЭГ; 2"' -0,93 ЭГ; 3 - 0,1 Ш+0,56 ТЭГ; 4 - 0,1 Ш+0,15 пентаэритрита; 5' - 0,1 Н+0,15 пентаэритрита; 5" - ПВХ без добавки; 5"' -0,15 пентаэритрита; 6 — 0,11+0,56 ТЭГ; 7-0,111+ +0,94 ЭГ; 8 - 0,11+0,15 пентаэритрита; 9 - 0,11+0,94 ЭГ

При термораспаде ПВХ в присутствии смесей карбоксилатов цинка с полиолами наблюдали большой индукционный период, в течение которого не образуется нерастворимая фракция (рис. 2, кривые 3—9), причем для смесей I с полиолами этот индукционный период совпадает с периодом Т (кривые 6,8,9). При раздельном введении в полимер полиолов (кривая 2) и карбоксилатов цинка (кривая 1) нерастворимая фракция появляется практически без индукционного периода.

За период Т при распаде ПВХ с добавками смесей солей цинка с полиолами практически не появляется окраска полимера, что подтверждают электронные спектры поглощения, в которых поглощение в видимой области спектра незначительно (рис. 3). В присутствии карбоксилатов цинка полимер при 453 К чернеет через ~2 мин. При распаде ПВХ с добавками полиолов сразу же появляется окраска полимера, углубляющаяся со временем (кривая S).

Рис. 3. Электронные спектры поглощения 0,8%-ных растворов в ТГФ образцов ПВХ, подвергнутых распаду при 453 К в вакуумированных до ~10-2 Па ампулах без добавок 60 мин (i) и с добавками (моль/кг ПВХ) в течение разного времени (указано в скобках в мин): 2 - 0,11+0,15 ПЭ (175); 3 — 0,2ТЭГ (20); 4 - 0,11+0,93 ЭГ (230); 5-0,1 Ш+0,56ТЭГ (60); 0,1 1+0,56 ТЭГ (110); 6-0,1 Н+0,93ЭГ (150)

Итак, соли цинка органических кислот со спиртами и полиолами образуют смеси, обладающие значительным синергическим действием на скорость дегидрохлорирования ПВХ, сшивку макроцепей, изменение цвета полимера.

Рис. 4. Зависимость периода Т от концентрации полиолов при термораспаде ПВХ при 453 К в присутствии (моль/кг ПВХ) 0,1 I (в), 0,1 II {б, Г, 2, 3, 5) и 0,1 III (б, 1", 4, 6, 7). а: 1 - пентаэритрит, 2 — маннит, 3 — глицерин, 4 — ЭГ, 5 - ДЭГ, 6 - ПЭГ, 7 — ТЭГ, S-БГ, 9-СТС, 10 — ОКС. б: 1 - пентаэритрит, 2 — ЭГ, 3 - СТС, 4 — ТЭГ, 5'-ТЭГ, 5"- ПЭГ, 6 — СТС, 7 — ОКС. {11 (о), 8 (б)- теоретические кривые, построенные из условия аддитивности действия карбоксилатов цинка и кислородсодержащих соединений на период Т)

На рис. 4 представлена зависимость периода Т, характеризующего эффективность стабилизирующего действия смесей, от концентрации полиолов. Для солей цинка различных органических кислот общий вид кривых идентичен (рис. 4). Больший синергический эффект на процесс образования нерастворимой фракции (рис. 2), появления окраски полимера (рис. 3) и в ряде случаев по периоду Т (рис. 4) при использовании смесей I с полиолами обусловлен тем, что при взаимодействии с НС1 данной соли цинка образуется MOM, являющийся диенофилом, присоединяющимся к сопряженным двойным связям, ответственным за каталитическое действие НС1, сшивку макроцепей и появление окраски полимера [1].

Страница:  1  2  3 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы