Водородные связи

введение

Интерес к олигомерам фторида водорода (димеру, тримеру) в последние десятилетия поистине велик. Объясняется это прежде всего той ролью, которую играет водородная связь при интерпретации, моделировании и прогнозировании свойств огромного класса веществ, представляющих непосредственный практический интерес (достаточно вспомнить о воде). Ассоциаты молекул фтори

да водорода рассматриваются как наиболее простые комплексы, компоненты которых удерживаются с помощью водородных связей, а димер (HF)2 стоит первым в этом ряду.

Сейчас много известно о структуре димера фторида водорода по результатам экспериментальных исследований методами молекулярной спектроскопии и в газовой фазе, и в инертных средах матриц благородных газов. В последнем случае используется прием, позволяющий отделить интересующее соединение от других молекул инертным растворителем, например аргоном, чтобы предотвратить химические реакции или комплексообразование с другими частицами. По результатам этих исследований и был сделан вывод о стабильности соединения (HF)2 и определены многие его параметры. Строение комплекса (HF)2 в настоящее время изучают и теоретически методами компьютерного моделирования, причем предсказания теории претендуют на точность, вполне сопоставимую с экспериментальной.

1 ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 Водородная связь

Представления об участии атома водорода в образовании двух химических связей (а не одной, как соответствовало бы его классической валентности) появились в конце XIX века (Ильинский, 1887 год) и начале XX века (Мур и Винмил, 1912 год; Хаггинс, 1919 год). Дальнейшее достаточно быстрое накопление экспериментальных данных, для объяснения которых эти представления оказались полезными, позволило не только привыкнуть к самому факту наличия водородной связи, но и дать некоторые разъяснения, по каким причинам она возникает, почему такого типа связь наиболее широко распространена именно для водородсодержащих соединений и не столь часто встречается у соединений, в которых соответствующие атомы водорода заменены на другие, например на атомы щелочных металлов [1].

Водородную связь относят к числу слабых химических взаимодействий. Энергия водородной связи обычно лежит в пределах от 10 до 30 кДж/моль, хотя иногда она достигает и сотен кДж/моль. Энергии обычных химических связей (ковалентных и ионных), как правило, заметно превышают 150 кДж/моль, достигая, например, для молекул азота или оксида углерода величин 900 кДж/моль и более [1]. Тем не менее за последние полвека появилось четкое понимание исключительной роли слабых взаимодействий, прежде всего роли водородных связей в стабилизации конденсированных состояний многих простых молекулярных систем, например воды, фтороводорода, и, что самое существенное, в стабилизации биополимеров (нуклеиновых кислот, белков).

Водородные связи позволяют полимерным цепям соединяться в специфические трехмерные структуры, приобретающие при этом функциональную биологическую активность, структуры, с одной стороны достаточно прочные (за счет образования большого числа водородных связей), а с другой - достаточно чутко реагирующие на изменение внешних условий (например, приближение той или иной молекулы) именно из-за того, что эти взаимодействия являются слабыми. Разрыв таких связей лишает белки или нуклеиновые кислоты их биологических функций. Отсюда, в частности, видна исключительно важная роль водородных связей, которую они играют в биологических процессах на молекулярном уровне [2]. Понятно и то важное значение исследований и понимания природы водородных связей, которым в последние время было уделено столь пристальное внимание ученых различных направлений.

Долгое время доминировала сугубо электростатическая точка зрения: атом водорода, образующий такую связь, обычно связан с достаточно хорошо выраженным электроотрицательным атомом, то есть атомом с высоким сродством к электрону, из-за чего электронная плотность на атоме водорода понижена по сравнению с плотностью изолированного атома водорода. Следовательно, суммарный электрический заряд на таком атоме оказывается положительным, что и позволяет атому взаимодействовать еще с одним электроотрицательным атомом. Такое взаимодействие с каждым из двух атомов, как правило, слабее взаимодействия с тем атомом, с которым атом водорода был соединен первоначально. Образование подобной связи с третьим и т. д. атомом практически оказывается невозможным из-за того, что начинает доминировать электростатическое отталкивание электроотрицательных атомов друг от друга [1]. Современные расчеты показывают, однако, что суммарный заряд на атоме водорода, участвующем в образовании водородной связи, практически не меняется по сравнению с зарядом в мономерной молекуле, что говорит о том, какую заметную роль в образовании водородной связи должны играть поляризация, перераспределение электронного заряда в отдельных областях пространства.

В настоящее время интерпретация образования химической связи дается, как правило, на языке теории молекулярных орбиталей, то есть в предположении, что для описания электронной структуры молекулы достаточно хорошим является приближение, когда каждый электрон задается своей одноэлектронной функцией, своей орбиталью.

Общей причиной возникновения водородной связи, как, впрочем, и других выделяемых обычно типов химических связей, является главным образом электростатическое, кулоновское взаимодействие разноименных зарядов тех частиц, которые образуют молекулу. Правда, это взаимодействие отличается от того, которое встречается в классической теории, поскольку оно не определяется только лишь плотностью распределения положительного и отрицательного зарядов, а выражается более сложным образом с помощью волновых функций, определяющих состояния молекулярной системы [3-5]. Поэтому естественно стремление найти некоторые более простые образы, которые давали бы возможность наглядно представить себе, как же все-таки образуется химическая связь.

Одно из таких представлений базируется на анализе перераспределения электронной плотности при образовании системы: увеличение электронной плотности в пространстве между ядрами ведет к усилению электростатического взаимодействия между электронами в этом пространстве и ядрами, что сопровождается, в свою очередь, понижением энергии системы [3].

Действительно, такое повышение электронной плотности должно сопровождаться ее понижением в других областях пространства и, следовательно, вклад в энергию от этих областей должен уменьшаться [3]. Кроме того, электроны, находясь в сравнительно малой указанной области пространства, должны сильнее отталкиваться друг от друга, а потому энергия также должна возрастать.

Анализ изменений распределения электронной плотности - полезный способ выяснения того, что происходит при возникновении химической связи. Простые представления не всегда оказываются работоспособными. Так, в настоящее время известны молекулы, в которых при образовании химической связи не происходит увеличения электронной плотности в пространстве между ядрами и тем не менее химическая связь вполне реально существует [3].

Страница:  1  2  3  4 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы