Экологические проблемы эксплуатации нефтеперерабатывающих предприятий

Отработанный катализатор стекает в регенератор. Для восстановления активности эти отложения (кокс) выжигают посредством контакта горячего катализатора с потоком воздуха. Затем катализатор рециркулируется для повторного использования. Чем выше температура регенерации, тем быстрее протекает этот процесс. В настоящее время часто стали использоваться аппараты каталитического крекинга, где тепло нео

бходимое для протекания процесса получается путём сгорания кокса, отложившегося на катализаторе, в регенераторе. Поэтому для проведения технологического процесса важным параметром регенерации является соотношение между количеством CO и CO2 в продуктах сгорания кокса. То есть в регенераторах такого типа кокс сознательно не дожигается до CO2, а дожигается лишь до определённого соотношения для поддержания необходимой температуры. Повышение температуры сгорания кокса в регенераторах современных установок привело к некоторому снижению доли CO, но не позволило полностью его дожигать. Поэтому дымовые газы выходящие из регенератора содержат большое количество CO.

При процессе обжига катализатора в регенераторе на нём происходит сгорание не только кокса, но и отложившихся на нём соединений серы, азота, поэтому выпускать дымовые газы сразу в атмосферу нельзя. Раньше отходящий газ из регенератора просто пропускали через внутренний циклон для отделения пылевидного катализатора, далее он поступал в дожигатель CO, потом в атмосферу, часто через электрофильтр. При такой очистке в атмосферу попадало большое количество оксидов серы и азота. Заметим, что при использовании высокотемпературной регенерации отпадает нужда в СО – дожигателе и радикально изменяется характер выбросов при каталитическом крекинге в псевдоожиженном слое. Но сложность проведения процесса высокотемпературной регенерации заключается в том, что катализатор имеет свойство спекаться при высоких температурах [15].

Следует отметить также ещё один источник выбросов дымовых газов в атмосферу – это печь, через которую первоначально проходит сырьё и где нагревается до необходимой температуры процесса. Эти технологические нагреватели работают на наиболее доступном и экономичном топливе, обычно представляющем собой смесь поставляемого естественного газа, топливного газа, получаемого на заводе, и топливной нефти. В качестве последней обычно используется остаточная топливная нефть. Обычно половина или более потребности в тепле покрывается топливным газом, производимым на заводе.

Выбросы из печей зависят от типа топлива, но типичные объёмы выбросов приведены в таблице 2.

Таблица 2 - Типичные объёмы выбросов загрязняющих веществ в атмосферу из печей [3]

Загрязнение

Объёмы выбросов при сгорании топлива

Природный газ,

мкг/м3

Топливная нефть,

кг/м3

Углеводороды (в пересчёте на CH4)

Аэрозоли

SOx (в пересчёте на SO2)

CO

NOx (в пересчёте на NO2)

48,4

81 – 243

9,7

273

193 – 209

0,205

32

1,025

12,018

2.1.3 Последствия воздействия нефтеперерабатывающих предприятий на атмосферу

Мощные предприятия нефтепереработки имеют стабильно высокое содержание загрязняющих веществ вблизи источника, очень медленно снижающееся по мере удаления от него. Наиболее опасная обстановка возникает в аварийных ситуациях.

В результате деятельности нефтеперерабатывающих предприятий в атмосферу осуществляется выброс в больших количествах углеводородов, угарного газа, углекислого газа, различных сернистых соединений, оксидов азота, твердых веществ.

Эмиссия в атмосферу газов: СО2, СО, СН4, С2Н6, оксидов азота – приводит к появлению «парникового эффекта». Таким образом, нефтеперерабатывающие предприятия входят в число виновников глобального потепления климата [4].

Выбросы оксидов азота, углеводородов способствуют образованию тропосферного озона в результате фотохимических реакций. Тропосферный озон является одним из парниковых газов. Кроме того, образующийся фотохимический смог является очень токсичным.

Под действием выбросов происходит разрушение стратосферного озона. Стратосферный озон поглощает жесткое ультрафиолетовое излучение, которое вредно для всего живого. Увеличивающаяся озоновая дыра ведет к онкологическим заболеваниям, развитию катаракты, подавляет фотосинтез растений.

Еще одна проблема, связанная с атмосферными выбросами, - кислотные дожди. Нефтеперерабатывающие предприятия, несомненно, осуществляют свой вклад в усложнение этой проблемы. Это связано с тем, что источниками кислотных дождей служат газы, содержащие серу и азот; наиболее важные из них: SO2, NOx, H2S.

Таким образом, воздействие нефтеперерабатывающих предприятий на атмосферу является одной из причин глобальных экологических проблем.

2.2 Воздействие сточных вод нефтеперерабатывающих предприятий на гидросферу

Состав сточных вод нефтеперерабатывающих предприятий различных профилей по основным показателям отличается незначительно. Концентрация нефти, взвесей и БПКполн и другие показатели, находятся в пределах, указанных в таблице 3.

Количество сбросных вод в расчете на 1 т перерабатываемой нефти может достигать 70-100 м3. Однако большая их часть (90-95%) пребывает в обороте, так как проходит соответствующую очистку. Поэтому количество собственно сточных вод на предприятиях составляет обычно 1,6-3 м3 на 1 т нефти [2].

Сточные воды НПП отводят по двум системам канализации. В первую систему включают маломинерализованные стоки и дождевые воды. После очистки эти сточные воды возвращаются для повторного использования. Избыток воды (во время ливней) направляют в аварийные накопители и после очистки сбрасывают в водоем.

Во вторую систему канализации входят несколько (от 5 до 7) сетей, транспортирующих сточные воды от отдельных цехов и установок. Эти воды сильно минерализованы, загрязнены токсичными веществами и в обороте не используются. При необходимости они могут подвергаться локальной очистке от специфических загрязнений.

Таблица 3 - Состав сточных вод

нефтеперерабатывающих предприятий [2]

Показатель загрязнения

Содержание, мг/л

в стоках I системы*

в стоках II системы**

Взвешенные вещества

200-350

600-800

Нефтепродукты

1000-2500

3000-5000

Сухой остаток

1000-1500

5000-6000

ПАВ

5-20

80-100

Фенолы

3-15

2-4

Аммонийный азот

25-30

20-30

ХПК

400-850

600-800

БПКполн

250-550

300-500

рН

7,8-8,6

7,5-7,8

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23 


Другие рефераты на тему «Экология и охрана природы»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы