Сущность, модели, границы применения метода производственной функции

Прибыль составит

Очевидно, что при малых объемах выпуска

фирма несет убытки, так как П < 0.

Здесь y w точка безубыточности (порог рентабельнос

ти), определяемая соотношением

Если y > y w , то фирма получает прибыль, и окончательное решение об объеме выпуска зависит от состояния рынка сбыта производимой продукции (см. рис. 10).

2. В более общем случае, когда С 2 0, имеются две точки безубыточности и причем положительную прибыль фирма получит, если объем выпуска y удовлетворяет условию

На этом отрезке в точке достигается наибольшее значение прибыли. Таким образом, существует оптимальное решение задачи о максимизации прибыли. В точке А , соответствующей издержкам при оптимальном выпуске, касательная к кривой издержек С параллельна прямой линии дохода R .

Следует заметить, что окончательное решение фирмы также зависит от состояния рынка, но с точки зрения соблюдения экономических интересов ей следует рекомендовать оптимизирующее значение выпуска (рис. 11).

Рис. 11. Оптимальный объем выпуска

В общем случае, когда С ( у ) является нелинейной возрастающей и выпуклой вниз функцией (так как С' ( у ) > 0 и С'' ( у ) > 0) объема выпуска, ситуация полностью аналогична той, которая рассмотрена в пункте 2. По определению прибылью считается величина

Точки безубыточности и определяются из условия равенства прибыли нулю, а максимальное ее значение достигается в точке которая удовлетворяет уравнению

или

Таким образом, оптимальный объем производства характеризуется тем, что в этом состоянии маргинальный валовой доход ( R ( y )) в точности равен маргинальным издержкам C ( y ).

В самом деле, если y < то R ( y ) > C ( y ), и тогда следует увеличить выпуск продукции, поскольку ожидаемый дополнительный доход превысит ожидаемые дополнительные издержки. Если же y > то R ( y ) < C ( y ), и всякое увеличение объема уменьшит прибыль, поэтому естественно рекомендовать уменьшить объем производства и придти в состояние y = (рис. 12).

Рис. 12. Точка максимума прибылии зона безубыточности

(*)

Нетрудно видеть, что при увеличении цены ( р ) оптимальный выпуск, а также прибыль увеличиваются, т.е.

Это верно также и в общем случае, так как

Пример. Фирма производит сельскохозяйственные машины в количестве у штук, причем объем производства в принципе может изменяться от 50 до 220 штук в месяц. При этом естественно увеличение объема производства потребует увеличения затрат как пропорциональных, так и сверхпропорциональных (нелинейных), поскольку потребуется приобрести новое оборудование и расширить производственные площади.

В конкретном примере будем исходить из того, что общие издержки (себестоимость) на производство продукции в количестве у изделий выражаются формулой

C ( y ) = 1000 + 20 y + 0,1 y 2 (тыс. руб.).

Это означает, что постоянные издержки

C 0 = 1000 (т. руб.),

пропорциональные затраты

C 1 = 20 y ,

т.е. обобщенный показатель этих затрат в расчете на одно изделие равен: а = 20 тыс. руб., а нелинейные затраты составят C 2 = 0,1 y 2 ( b = 0,1).

Приведенная выше формула для издержек является частным случаем общей формулы, где показатель h = 2.

Для нахождения оптимального объема производства воспользуемся формулой точки максимума прибыли (*), согласно которой имеем:

Совершенно очевидно, что объем производства, при котором достигается максимальная прибыль, весьма существенно определяется рыночной ценой изделия p .

В табл. 1 представлены результаты расчета оптимальных объемов при различных значениях цены от 40 до 60 тыс. рублей за изделие.

В первом столбце таблицы фигурируют возможные объемы выпуска у , второй столбец содержит данные о полных издержках С ( у ), в третьем столбце представлена себестоимость в расчете на одно изделие:

Таблица 1

Данные об объемах выпуска, затратах и прибыли

Объемы и затраты

Цены и прибыли

Y

C

AC

MC

40

42

44

50

54

60

50

2250

45

30

- 250

- 150

- 50

250

450

740

     

33

           

80

3240

40,5

36

-40

+120

280

760

1080

1560

     

38

           

100

4000

40

40

0

200

400

1000

1400

2000

     

41

           

110

4410

40,1

42

- 10

210

430

1090

1530

2190

     

43

           

120

4840

40,3

44

- 40

200

440

1160

1640

2360

     

47

           

Продолжение таблицы 1

150

6250

41,7

50

- 250

50

350

1250

1850

2750

     

52

           

170

7290

42,9

54

- 490

- 150

190

1210

1890

2910

     

57

           

200

9000

45

60

- 1000

- 600

- 200

1000

1800

3000

     

62

           

220

10240

46,5

64

- 1440

- 1000

- 560

760

1640

2960

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы