Анализ рядов распределения
Содержание
Введение
1. Характеристики центра распределения
1.1 Мода
1.2 Медиана
1.3 Показатели дифференциации
2. Характеристики вариации
2.1 Абсолютные характеристики вариации
2.1.1 Расчет дисперсии способом моментов
2.1.2 Расчет дисперсии альтернативного признака
2.1.3 Межгрупповая дисперсия. Правило сложения дисперсий
2.2 Относительные характерист
ики вариации
3. Теоретические кривые распределения
3.1 Нормальное распределение
3.2 Выравнивание эмпирического распределения по кривой нормального распределения
3.3 Критерии согласия
3.4 Характеристики неравномерности распределения
Введение
Ряд распределения (т.е. упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку) характеризует состав, структуру совокупности по определенному признаку. Его строят для того, чтобы выявить характер распределения единиц совокупности по варьирующему признаку, определить закономерности в этом распределении.
Для анализа ряда распределения используют ряд статистических характеристик:
частотные характеристики;
характеристики центра распределения;
характеристики вариации;
характеристики неравномерности распределения.
Частотные характеристики ряда распределения, а именно, частоты и частости (или другое название - доля ), накопленные (или кумулятивные) частоты и частости , абсолютная и относительная плотность распределения, были рассмотрены в теме "Сводка и группировка статистических данных".
1. Характеристики центра распределения
К характеристикам центра распределенияотносят среднюю, моду и медиану. Эти характеристики принято также называть структурными средними, они определяют вид полигона и гистограммы, эмпирического закона распределения.
В качестве средней для характеристики центра распределениячаще всего используют среднюю арифметическую простую или взвешенную.
1.1 Мода
Мода (Мо) - это варианта, которая чаще всего встречается в изучаемой совокупности. Мода не зависит от крайних значений вариант и может применяется для характеристики центра в рядах распределения с неопределенными границами.
В дискретном вариационном ряду мода определяется визуально и равна варианте с наибольшей частотой или частостью. Данные распределения рабочих по стажу работы (см. лекцию "Сводка и группировка статистических данных") показывают, что наибольшее рабочих имеют стаж работы 4 года, т.е. варианта, равная 4, является модой признака. Мо = 4.
В интервальных рядах распределения для нахождения моды сначала по наибольшей частоте определяют модальный интервал, т.е. интервал, содержащий моду, а затем приблизительно рассчитывают ее по формуле:
,
где - нижняя граница модального интервала;
- величина модального интервала;
- частоты соответственно в предыдущем и следующим за модальным интервалах.
Встречаются ряды, которые имеют две моды (бимодальный ряд) или несколько (полимодальный).
Рассчитаем моду интервального ряда распределения рабочих по размеру заработной платы (см. лекцию "Сводка и группировка статистических данных").
В этом вариационном ряду интервал 900-1000 грн., в который попало максимальное количество рабочих (9 чел), является модальным.
грн.
Полученное значение моды свидетельствует о том, что в рассматриваемой совокупности наиболее типичной является заработная плата 914,29 грн., что выше ранее рассчитанной средней зарплаты (870 грн).
Для ряда с неравными интервалами модальный интервал определяется по наибольшей плотности распределения, а в расчетной формуле моды вместо частот используют абсолютные плотности распределения.
Для интервальных вариационных рядов с равными интервалами моду можно приближенно определить графически.
Для этого на гистограмме этого ряда (см. гистограмму в лекции "Сводка и группировка статистических данных") выбирают самый высокий прямоугольник, который и является модальным.
Далее правую верхнюю вершину прямоугольника, предшествующего модальному (частота fMо-1), соединяют с правой верхней вершиной модального прямоугольника (частота fMо), а левую верхнюю вершину этого прямоугольника - с левой верхней вершиной прямоугольника, следующего за модальным (частота fMо+1).
Из точки пересечения опускают перпендикуляр на горизонтальную ось. Основание перпендикуляра покажет значение моды Мо. Точность определения зависит от масштаба графика.
1.2 Медиана
Медианой Ме называют такое значение признака, которое приходится на середину ранжированного ряда и делит его на две равные по числу единиц части. Таким образом, в ранжированном ряду распределения одна половина ряда имеет значения признака, превышающие медиану, другая - меньше медианы. Медиану используют вместо средней арифметической, когда крайние варианты ранжированного ряда (наименьшая и наибольшая) по сравнению с остальными оказываются чрезмерно большими или чрезмерно малыми.
В дискретном вариационном ряду, содержащем нечетное число единиц, медиана равна варианте признака, имеющей номер
:
,
где N - число единиц совокупности.
В дискретном ряду, состоящем из четного числа единиц совокупности, медиана определяется как средняя из вариант, имеющих номера
и : .
В распределении рабочих по стажу работы медиана равна средней из вариант, имеющих в ранжированном ряду номера 10: 2 = 5 и 10: 2 + 1 = 6. Варианты пятого и шестого признака равны 4 годам, таким образом
года
При вычислении медианы в интервальном ряду сначала находят медианный интервал, (т.е. содержащий медиану), для чего используют накопленные частоты или частости. Медианным является интервал, накопленная частота которого равна или превышает половину всего объема совокупности. Затем значение медианы рассчитывается по формуле:
Другие рефераты на тему «Экономико-математическое моделирование»:
- Динамическое программирование
- Математическое моделирование экономических процессов на железнодорожном транспорте
- Применение экономико-математических методов в экономике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Моделирование и прогнозирование естественного прироста населения в РФ
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели