Анализ рядов распределения
Вычисляем среднюю из внутригрупповых дисперсий:
Средняя дисперсия отражает вариацию выработки, обусловленную всеми факторами, кроме квалификации, но в среднем по совокупности.
Межгрупповая дисперсия, характеризует вариацию среднегрупповых выработок, вызванную различием групп рабочих по квалификационному разр
яду:
Вычисляем общую дисперсию совокупности, которая отражает суммарное влияние всех возможных факторов на общую вариацию выработки изделий всеми рабочими:
Определяем общую дисперсию по правилу сложения дисперсий:
Очевидно, что чем выше доля межгрупповой дисперсии в общей дисперсии , тем сильнее влияние факторного признака (разряда) на результативный (выработку).
Эта доля характеризуется эмпирическим коэффициентом детерминации:
Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х. Остальная часть общей вариации у вызвана изменением прочих факторов.
В примере эмпирический коэффициент детерминации равен:
или 66,7%,
Это означает, что на 66,7% вариация производительности труда рабочих обусловлена различиями в квалификации, а на 33,3% - влиянием прочих факторов.
Эмпирическое корреляционное отношение показывает тесноту связи между группировочным и результативными признаками. Рассчитывается как корень квадратный из эмпирического коэффициента детерминации:
Эмпирическое корреляционное отношение , как и , может принимать значения от 0 до 1.
Если связь отсутствует, то =0. В этом случае =0, то есть групповые средние равны между собой и межгрупповой вариации нет. Значит группировочный признак - фактор не влияет на образование общей вариации.
Если связь функциональная, то =1. В этом случае дисперсия групповых средних равна общей дисперсии (), то есть внутригрупповой вариации нет. Это означает, что группировочный признак полностью определяет вариацию изучаемого результативного признака.
Чем ближе значение корреляционного отношения к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
Для качественной оценки тесноты связи между признаками пользуются соотношениями Чэддока.
|
0 |
0-0,2 |
0,2-0,3 |
0,3-0,5 |
0,5-0,7 |
0,7-0,9 |
0,9-0,99 |
1 |
Сила связи |
отсутствует |
очень слабая |
слабая |
умеренная |
заметная |
тесная |
весьма тесная |
функцио- нальная |
В примере , что свидетельствует о тесной связи между производительностью труда рабочих и их квалификацией.
2.2 Относительные характеристики вариации
При сравнении вариации различных признаков или одного признака в различных совокупностях, используют относительные характеристики вариации - коэффициенты вариации.
Коэффициенты вариации рассчитываются как отношение абсолютных характеристик вариации (R,d,s) к центру распределения и часто выражаются процентами. Линейный коэффициент вариации: . Квадратичный коэффициент вариации: . Коэффициент осциляции:
Квадратичный коэффициент вариации используют как критерий однородности совокупности. Совокупность считается однородной, если
Если центр распределения представлен медианой, то используют квартильный коэффициент вариации:
3. Теоретические кривые распределения
В вариационных рядах распределения существует определенная связь между изменением частот и значения варьирующего признака: частоты с ростом значения признака сначала увеличиваются, а затем после достижения какой-то максимальной величины в середине ряда уменьшаются. Значит, частоты в рядах изменяются закономерно в связи с изменением варьирующего признака. Такого рода закономерные изменения частот в вариационных рядах называются закономерностями распределения.
Анализ вариационных рядов предполагает выявление такой закономерности распределения, определение ее типа и построение теоретической кривой распределения, характеризующей данный тип распределения. Под кривой распределения понимают графическое изображение в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариант. Эмпирической (фактической) кривой распределения является полигон. Под теоретическим распределением понимают вероятностное распределение частот в наблюдаемом вариационном ряду.
В практике статистического исследования встречаются распределения: нормальное, логарифмическое, биноминальное, Пуассона и др.
3.1 Нормальное распределение
При построении статистических моделей наиболее часто применяется нормальное распределение. Распределение непрерывной случайной величины х называют нормальным, если описывается следующей кривой:
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели