Анализ рядов распределения

Вычисляем среднюю из внутригрупповых дисперсий:

Средняя дисперсия отражает вариацию выработки, обусловленную всеми факторами, кроме квалификации, но в среднем по совокупности.

Межгрупповая дисперсия, характеризует вариацию среднегрупповых выработок, вызванную различием групп рабочих по квалификационному разр

яду:

Вычисляем общую дисперсию совокупности, которая отражает суммарное влияние всех возможных факторов на общую вариацию выработки изделий всеми рабочими:

Определяем общую дисперсию по правилу сложения дисперсий:

Очевидно, что чем выше доля межгрупповой дисперсии в общей дисперсии , тем сильнее влияние факторного признака (разряда) на результативный (выработку).

Эта доля характеризуется эмпирическим коэффициентом детерминации:

Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х. Остальная часть общей вариации у вызвана изменением прочих факторов.

В примере эмпирический коэффициент детерминации равен:

или 66,7%,

Это означает, что на 66,7% вариация производительности труда рабочих обусловлена различиями в квалификации, а на 33,3% - влиянием прочих факторов.

Эмпирическое корреляционное отношение показывает тесноту связи между группировочным и результативными признаками. Рассчитывается как корень квадратный из эмпирического коэффициента детерминации:

Эмпирическое корреляционное отношение , как и , может принимать значения от 0 до 1.

Если связь отсутствует, то =0. В этом случае =0, то есть групповые средние равны между собой и межгрупповой вариации нет. Значит группировочный признак - фактор не влияет на образование общей вариации.

Если связь функциональная, то =1. В этом случае дисперсия групповых средних равна общей дисперсии (), то есть внутригрупповой вариации нет. Это означает, что группировочный признак полностью определяет вариацию изучаемого результативного признака.

Чем ближе значение корреляционного отношения к единице, тем теснее, ближе к функциональной зависимости связь между признаками.

Для качественной оценки тесноты связи между признаками пользуются соотношениями Чэддока.

0

0-0,2

0,2-0,3

0,3-0,5

0,5-0,7

0,7-0,9

0,9-0,99

1

Сила связи

отсутствует

очень слабая

слабая

умеренная

заметная

тесная

весьма тесная

функцио-

нальная

В примере , что свидетельствует о тесной связи между производительностью труда рабочих и их квалификацией.

2.2 Относительные характеристики вариации

При сравнении вариации различных признаков или одного признака в различных совокупностях, используют относительные характеристики вариации - коэффициенты вариации.

Коэффициенты вариации рассчитываются как отношение абсолютных характеристик вариации (R,d,s) к центру распределения и часто выражаются процентами. Линейный коэффициент вариации: . Квадратичный коэффициент вариации: . Коэффициент осциляции:

Квадратичный коэффициент вариации используют как критерий однородности совокупности. Совокупность считается однородной, если

Если центр распределения представлен медианой, то используют квартильный коэффициент вариации:

3. Теоретические кривые распределения

В вариационных рядах распределения существует определенная связь между изменением частот и значения варьирующего признака: частоты с ростом значения признака сначала увеличиваются, а затем после достижения какой-то максимальной величины в середине ряда уменьшаются. Значит, частоты в рядах изменяются закономерно в связи с изменением варьирующего признака. Такого рода закономерные изменения частот в вариационных рядах называются закономерностями распределения.

Анализ вариационных рядов предполагает выявление такой закономерности распределения, определение ее типа и построение теоретической кривой распределения, характеризующей данный тип распределения. Под кривой распределения понимают графическое изображение в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариант. Эмпирической (фактической) кривой распределения является полигон. Под теоретическим распределением понимают вероятностное распределение частот в наблюдаемом вариационном ряду.

В практике статистического исследования встречаются распределения: нормальное, логарифмическое, биноминальное, Пуассона и др.

3.1 Нормальное распределение

При построении статистических моделей наиболее часто применяется нормальное распределение. Распределение непрерывной случайной величины х называют нормальным, если описывается следующей кривой:

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы